• 제목/요약/키워드: 이송속도 제어

검색결과 79건 처리시간 0.023초

공작기계 시스템의 모델링과 동적특성 분석 (제2보) - 이송계의 모델링과 동적특성 분석 - (Modeling and Dynamic Analysis of Electro-mechanical System in Machine Tools(2$^{nd}$ Report) - Modeling and Dynamic Analysis of Feed Drive System -)

  • 박용환;신흥철;문희성;최종률
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.218-224
    • /
    • 1999
  • In the feed drive systems of machine tools that consist of many mechanical components such as motor, coupling, ballscrew, nut or table, a torsional vibration is often generated because of its elastic elements in torque transmission. Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed system. In this paper, the mathematical model of a feed drive system was developed and its mechanical characteristics were analyzed on the basis of the proposed model. The design concepts of speed control loop to stabilize a feed drive system were also proposed.

  • PDF

Feedrate Control에 의한 초경코어 표면조도 향상에 관한 연구 (A Study on Improvement of WC Core Surface Roughness by Feedrate Control)

  • 김현욱;정상화;이동길;김상석;김혜정;김정호
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.57-62
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding technology for the molding core surface are required. This paper reports a development of feedrate control grinding method for aspherical molding core using parallel grinding method. A plane molding core was ground using conventional and feedrate control grinding method. The performance of the feedrate control method was evaluated by measurement of surface roughness. The result indicated that the average surface roughness was reduced to 1.5 nm, which is more efficient than the conventional grinding method.

황삭 및 정삭을 고려한 통합형 NURBS 곡면 인터폴레이터 (Integrated NURBS Surface Interpolator Considering Both Rough and Finish Cuts)

  • 구태훈;지성철
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1958-1966
    • /
    • 2003
  • Three-axis CNC surface machining entails a series of processes including rough cutting, intermediate cutting and finish cutting for a reference surface defined in CAD/CAM. This study is targeting development of an integrated NURBS surface interpolator that can incorporate rough, intermediate and finish cutting processes. In each process, volume to be removed and cutting condition are different according to the shape of a part to be machined and the reference surface. Accordingly, the proposed NURBS surface interpolator controls motion in real-time optimized for the machining conditions of each process. In this paper, a newly defined set of G-codes is proposed such that NURBS surface machining through CNC is feasible with minimal information on the surface composition. To verify the usefulness of the proposed interpolator, through computer simulations on NURBS surface machining, total machining time, size of required NC data and cutting force variations are compared with the existing method.

2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출 (Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage)

  • 황철웅;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

가공변수의 불확실성을 고려한 전자제어식 차동제한장치 솔레노이드 어셈블리의 강건 최적설계 (Robust Optimization of the Solenoid Assembly in Electromagnetic Limited Slip Differential by Considering the Uncertainties in Machining Variables)

  • 오상균;이광기;서창희;정윤철;김영석
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1307-1313
    • /
    • 2011
  • 전자제어식 차동제한 장치는 기계식에 비해서 능동제어가 가능하고 응답성이 좋아 기계식을 대체해 나가고 있다. STS 304 재질의 코일 하우징은 전자제어식 차동제한장치의 솔레노이드 어셈블리에서 가장 중요한 부품이다. 코일 하우징의 제조시 높은 형상 정밀도가 필수적이나, STS 304의 박판 사용과 가공변수의 변동으로 정밀 가공이 어렵다. 본 연구의 목적은 코일하우징의 가공조건에서 강건해를 구하여 평균과 변동을 최적화 하는 것이다. 코일하우징의 형상정밀도 평균과 표준편차를 최소화 하기 위한 주요 변수로 조의 척킹압력, 절삭속도, 이송속도의 평균과 표준편차가 고려됐다. 가공변수의 변동을 고려하여 평균과 표준편차를 모두 최소화 하는 최적의 조건을 선정하고자 반응표면모델 기반 2차 테일러 전개를 통한 강건 최적설계를 수행하였다.

절삭력 간접 측정을 이용한 CNC공작기계 제어 (Control of a CNC Machining Center Using the Indirect Measurement of the Cutting Force)

  • 송진일;손주형;권동수;김성권
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.9-20
    • /
    • 1998
  • In recent manufacturing process, the increase of productivity has been attempted by reducing machining time with the increase of cutting force. However, the excessive increase of cutting force can cause tool breakage and have a bad effect on both manufacturing machine and workpiece. Thus, it is necessary to estimate and control the cutting force in real time during the process. In this study, use of disturbance observer is proposed for the indirect cutting force estimation. The estimated cutting force is used for the real-time control of feedrate, making the actual cutting force follow the reference force command. Since the suggested method does not need an expensive sensor like a dynamometer, the method is expected to be used practically. Since the actual cutting force follow the reference force, resulting the reducing of the machining time the increase of productivity are also expected, and the quality of cutting surface has been improved due to the adjusted feedrate. Besides, an actual constant cutting force guarantees the prevention of tool breakage. To show the effectiveness of the suggested cutting force control method, an experimental setup has been made without sensor and applied to several workpieces. Experiments show that the suggested method is effective to cutting force control of a CNC machining center.

  • PDF

무인이송로봇기반 자동 소사료 공급 시스템 개발 및 검증 (Development and Verification of the Automated Cow-Feeding System Driven by AGV)

  • 안성수;이용찬;유지훈;이연정
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.232-241
    • /
    • 2017
  • 본 논문에서는 대형화되고 기업화되어가고 있는 국내 축산농가를 위한 AGV와 스크류컨베이어 기반의 자동 소사료 공급시스템에 대해 소개한다. 제안된 자동 소사료 공급시스템은 최상단에 펠렛형 혼합 사료가 적재되는 호퍼부, 호퍼부에서 펠렛형 혼합사료를 배출부로 이송시키는 스크류컨베이어를 장착한 이송부, 벨트컨베이어로 구성된 배출부 및 시스템 이동을 위한 전자 유도선 주행방식의 AGV로 구성되어있다. 적재된 사료 무게는 이송부의 하부에 위치한 로드셀에 의해 측정된다. 개별 우사 셀에 설치되는 RFID TAG에 미리 저장된 사료 배출정보를 시스템이 읽어 정해진 양만큼의 사료를 시스템이 주행하면서 배출하게된다. 공급 배출 테스트시스템을 제작하여 사료의 공급 능력을 결정짓는 사료 이송부의 스크류 외경, 스크류 샤프트 외경, 스크류 피치 간격 등을 포함하는 스크류컨베이어 설계인자 도출을 하였으며 도출된 설계인자들을 최종 공급시스템 제작 시에 적용하였다. 사료 급이시스템을 제어하기 위해 DSP기반의 주제어기 및 공급시나리오에 따른 급이알고리듬도 함께 개발되었다. 실험을 통해 국내 우사에 사료공급조건을 만족시키기 위해 설정된 목표인 5 m의 거리를 0.1 m/sec의 속도로 주행하면서 7 마리가 수용되는 한 개의 우사에 필요한 총 21 kg의 사료를 초당 420 g으로 균일하게 공급이 가능함을 확인하여 개발된 축우용 무인사료공급시스템이 규격화된 국내 축산농가에 적용될 수 있는 가능성을 확인하였다.

표면거칠기를 고려한 NURBS 곡선보간기 (NURBS Curve Interpolator for Controlling the Surface Roughness)

  • 최인휴;정태성;양민양;이동윤
    • 대한기계학회논문집A
    • /
    • 제29권5호
    • /
    • pp.698-706
    • /
    • 2005
  • Finish machining of a curved surface is often carried out by an NC system with curve interpolation in the field. This NURBS interpolation adopts a feedrate optimizing strategy based on both the geometrical information and dynamic properties. In case of a finish cut using a ball-end mill, the curve interpolator needs to take the machining process into account for more improved surface, while reducing the polishing time. In this study, the effect of low machinability at the bottom of a tool on surface roughness is also considered. A particular curve interpolation algorithm is proposed fur generating feedrate commands which are able to control the roughness of a curved surface. The simulation of the machined surface by the proposed algorithm was carried out, and experimental results are presented.

IPMSM 센서리스 제어에서의 속도리플저감 알고리즘에 관한 연구 (Study on Speed Ripple Reduction Algorithm in Sensorless Controlled IPMSM)

  • 이송철;정영석
    • 전력전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.249-253
    • /
    • 2016
  • In this study, a harmonic-pulsation-compensator (HPC) is presented to reduce a periodic speed ripple in IPMSM. A proportional-integral compensator in HPC is proposed instead of the existing integral compensator to reduce the speed ripple more rapidly. A formula to calculate a rotation angle is also proposed, making compensation optimal in sensored and sensorless controls. The validity of the proposed algorithm is verified by experiments.

이송 및 주축속도 가변속에 의한 볼 엔드밀 절삭공정의 절삭력 추적제어 (Cutting Force Control by Variable Feed and Spindle Speed in Ball-end Milling Process)

  • 이천환;이승욱;이건복
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.73-80
    • /
    • 1993
  • There and two important variables in machining process control, which are feed and cutting speed. It is possible to improve the machining accuracy and the productivity by maintaining the optimal feed and cutting speed. In this work, a controller is designed to achieve on-line cutting force control based on the modeling of cutting process dynamics established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and the second is spindle speed control under the constant feed. Finally, both are proved to work properly through simulation and experimentation.

  • PDF