• Title/Summary/Keyword: 이송모터 전류

Search Result 22, Processing Time 0.018 seconds

Research on the auto feedrate control of milling processes by the fuzzy control of motor currents (밀링 공정에서 퍼지제어와 전류신호를 이용한 자동이송 연구)

  • 김도현;전도영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.708-713
    • /
    • 2000
  • A research on the AFC(Auto Feedrate Control) by a fuzzy controller using a tool dynamometer and motor currents was conducted. For simulations, cutting dynamics of end-milling process was modeled by geometric relationship between tool and work-piece. The fuzzy logic controller was employed to track the desired cutting force and showed good performance in simulations and several experiments. The spindle motor currents was modeled to estimate cutting force and successfully used for the AFC.

  • PDF

예측 정보를 이용한 감시 시스템의 성능향상

  • 안중환;김화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.328-333
    • /
    • 1991
  • 가공 프로세스의 감시에 대한 많은 연구는 주로 과부하, 공구파손, 공구마멸, 채터링, 충돌 승을 대상으로 한 것으로, AE(Acoustic Emission), 모터전류, 절삭력, 진동, 절삭온 도 등의 신호를 감지한 뒤 이들 신호에 각종 신호 처리를 행하여 가공 상태에 대한 정보를 추출하고, 그것에 근거한 감시를 하고 있다. 작업중 감시연구에서 주로 제기 되는 문제는 공구교환이나 공작물 교환에 무관하게 또 작업에 지장을 주지 않으면서 이들 신호를 감지해야 하는 점과 감시처리의 신뢰성을 높여야 하는 점이다. 본 연구에서는 NC프로그램으로 부터 얻은 예측정보를 이용해서 선삭가공에서 감시 시스템의 성능향상을 시도 하였다. 예측정보는 감시코드의 형태로 각 NC블럭에 추가하여 실시간 감시에서 작업의 상태를 인식할 때 참고 정보로 활용하기 때문에 감시에 대한 신뢰성을 높일 수 있었다. 감시신호로는 이송축 직류 서보 모터의 전류를 사용하였다. 전체적인 감시 시스템의 프로그래밍 언어로는 C 를 사용하여, 실시간 감시처리를 가능하게 하였다.

Analysis of the Characteristics of the Feed motor Current for the Estimation of the Cutting Force in General Cutting Environment (일반적 상황에서 2차원 절삭력 추정을 위한 이송모터 전류의 거동분석)

  • Jeong, Young-Hun;Yun, Seong-Hyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.93-100
    • /
    • 2002
  • The current from the feed motor of a machine tool contains substantial information about the machining state. There have been many researches that investigated the current as a measure for the cutting farces. However it has been reported that this indirect measurement of the cutting farces from the feed motor current is only feasible in low frequency. In this research, it was presented that the bandwidth of the current monitoring can be expanded to 130 Hz. And the unusual behavior of the current was examined in this bandwidth. The cross-feed directional cutting force influences the machined surface of the workpiece, which makes it necessary to estimate this force to control the roughness of the machined sulfate. The current exists in the stationary feed motor, and it can give the useful information on the quality of the machined surface. But the unpredictable behavior of the current prevents applying the current to prediction of the cutting state. Empirical approach was conducted to resolve the problem. As a result, the current was shown to be related to the accumulation of the accumulation of the infinitesimal rotation of the motor. rotation of the motor. Subsequently the relationship between the current and the cutting force was identified.

A Study on the Tool Breakage Detection System in Face Milling Process (이송모터전류를 이용한 정면 밀림공구의 파손감시 시스템에 관한 연구)

  • 이강희;허일규;권원태;주종남;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.38-43
    • /
    • 1994
  • In milling process, monitoring and diagosis system is very importent to accomplish factory automation. In this study, to drvelope on-line tool breakage detection system in face milling operation, analysis and experiment were performed. The tool breakage detection experiment was performed in machining center and the effectiveness of the detection tool breakage detection alorithm and the usage of feed drive current as a detection signal were verified.

  • PDF

Indirect Cutting Force Measurement in Milling Process using Kalman Filter by Sensing Servo motor Current (카만필터와 이송모터의 전류 감지를 이용한 밀링공정시의 설삭력 간접측정)

  • 김종원;김태용;이원희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.3-8
    • /
    • 1994
  • This paper presents a practical method of measuring the cutting force milling process by sensing the feed-drive servo motor current,avoiding the use of a dynamomenter. The relation between the cutting force and the servo motor currents is obtained after the feed-drive system of machining center is modelled. In order to measure the cutting force indirectly, the cutting force in the feed-drive system is regrared as a disturbance, and a disturbance estimator is designed using Kalman filter. A horizontal type machining center is used in the experimental study. A comparison is made between the cutting force measured from the dynamometer and the servo motor current.

  • PDF

Tool Breakage Detection using Pattern Characteristics of Feed Motor Current in Milling Operations (이송모터 전류신호의 패턴특성을 이용한 밀링공구의 파손검출)

  • KIM, Sun-ho;Ahn, Jung-hwan;Park, Hwa-young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.23-34
    • /
    • 1995
  • This paper is concerned with effective and reliable tool breakage detection method using pattern characteristics of feed motor current in milling operations. Correlation coefficient is derived from the feature vector of signal for two consecutive which are extracted feed motor current over three spindle revolutions. The changing pattern of correlation coefficient is continuously compared to detect tool breakage and monitor cutting conditions. This proposed monitoring scheme is not affected by different tools, friction of motion, and varying cutting conditions and material shapes. Experimental results are presented to support the proposed monitoring scheme.

  • PDF

Cutting Torque Control in Drilling Part 2 : Drilling Torque Control Using Spindle Motor Current and Its Effect on Drill Flank Wear (드릴 공정시 절삭 토크 제어 제 2 편 : 주축 모터 전류를 이용한 드릴링 토크의 제어와 드릴 플랭크 마모에 대한 영향)

  • O, Yeong-Tak;Kim, Gi-Dae;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.107-115
    • /
    • 2001
  • Drilling torque was measured indirectly using the spindle motor current and controlled in real time through feedrate manipulation in a machining center. The PID controller designed in the previous paper was applied to drilling torque control. A series of cutting experiments were performed for various cutting conditions. Experimental results showed that the drilling torque was well regulated at a given reference level by feedrate manipulation in all cutting conditions. The increase in the cutting torque and temperature according to the increase in machining depth was suppressed and the risk of the drill failure and the drill flank wear were reduced remarkably through cutting torque control. Moreover, the suggested cutting torque control system doesn\`t disturb the cutting process and is practical for industrial environment. Therefore, the proposed culling torque control system will contribute to productivity improvement in drilling process.

  • PDF

Adaptive force regulation system in the milling process by current monitoring (전류감시를 이용한 밀링공정에서의 절삭력적응제어시스템)

  • 안동철;박영진;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.690-694
    • /
    • 1996
  • In order to regulate the cutting force at a desired level during peripheral end milling processes, a feedrate override Adaptive Control Constant system was developed. This paper presents an explicit pole-assignment PI-control law through spindle motor current monitoring and its application to cutting force regulation for feedrate optimization. An experimental set-up is constructed for the commercial CNC machining center without any major changes of the structure. A data transfer system is constructed with standard interface between an IBM compatible PC and a CNC of the machining center. Experimental results show the validity of the system.

  • PDF

A Study on the Design of Logistics Transportation System using Magnetic Levitation (자기부상 물류이송시스템 설계에 관한 연구)

  • Choi, Dae-Gyu;Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • In the paper, we propose a design method for the logistics transportation system using magnetic levitation that has a good characteristics without mechanical friction, noise and dust. The proposed transportation system consists of a levitation control system and a propulsion control system. Magnetic levitation system is an electromagnetic suspension system in which electromagnet generates magnetic attractive force and the attractive force pulls the rail. We design a PID controller for the current control of electromagnets. We use linear induction motors for propulsion of the proposed logistics transportation system and adapt the space vector PWM method for the propulsion control system. The proposed transportation system using magnetic levitation is verified performances through levitation and propulsion experiments.

Indirect Cutting Force Measurement by Using Servodrive Current Sensing and it's Application to Monitoring and Control of Machining Process (이송모터 전류 감지를 통한 절삭력의 간접측정과 절삭공정 감시 및 제어에의 응용)

  • Kim, Tae-Yong;Choi, Deok-Ki;Chu, Chong-Nam;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.133-145
    • /
    • 1996
  • This paper presents an indirect cutting force measuring system, which uses the current signals from the AC servo drive units of the horizontal machining center, with its applications to the adaptive regulation of the cutting forces in various milling processes and to the on-line monitoring of tool breakage. A typical model for the feed-drive control system of a horizontal machining center is developed to analyze cutting force measurement from the drive motor. The pulsating milling forces can be measured indirectly within the bandwidth of the current feedback control loop of the feed-drive system. It is shown that the indirectly measured cutting force signals can be used in the adaptive controller for cutting force regulation. The whole scheme has been embedded in the commercial machining center and a series of cutting experiments on the face cutting processes are performed. The adaptive controller reveals reliable cutting force regulating capability against the various cutting conditions. It is also shown that the tool breakage in milling can be detected within one spindle revolution by adaptively filtering the current signals. The effect of the cutter run-out has been considered for the reliable on-line detection of tool breakage.

  • PDF