• Title/Summary/Keyword: 이상 상태 탐지

Search Result 138, Processing Time 0.023 seconds

Evaluation on Watershed Natural Habitat Assessment for Conservation of Brachymystax lenok tsinlingensis in Naerin Upstream (내린천 상류 유역 열목어(Brachymystax lenok tslingensis) 서식지 자연성 평가)

  • Jeong Eun Kim;Hwang Goo Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.73-84
    • /
    • 2023
  • The objective of this study was to evaluate biodiversity and natural habitat environment of freshwater ecosystem. Our aim was therefore to produce a set of biodiversity and habitat indicators based on multi-parameters of water quality and biodiversity by analyzing the characteristics of the results by indicators. We selected four indicators a) anthropogenic disturbance, b) habitat diversity, c) biodiversity, d) ecosystem structure. The fishes cohabiting with Brachymystax lenok tsinlingensis were Rhynchocypris kumgangensis and Zacco koreanus. As a result of the anthropogenic disturbance evaluation, it was analyzed that vegetation embankment showed a more stable environment in the tributary than the main stream, and other disturbance was not confirmed As a result of the habitat diversity evaluation, it was analyzed that habitat evaluation index showed a high score of 200 more on average, showing an optimal habitat condition. As a result of the biodiversity evaluation, it was analyzed as a clean habitat condition with a high proportion of sensitive species, abundant dissolved oxygen, and little pollutants. As a results of the ecosystem structure, the ecological health condition metrics and appearance of endangered species showed large score deviation, but it was analyzed that the stream ecosystem health was generally excellent. There was a slight correlation between the habitat environment and the results of the nature habitat evaluation according to the appearance of the B. lenok tsinlingensis.

Drone-mounted fruit recognition algorithm and harvesting mechanism for automatic fruit harvesting (자동 과일 수확을 위한 드론 탑재형 과일 인식 알고리즘 및 수확 메커니즘)

  • Joo, Kiyoung;Hwang, Bohyun;Lee, Sangmin;Kim, Byungkyu;Baek, Joong-Hwan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • The role of drones has been expanded to various fields such as agriculture, construction, and logistics. In particular, agriculture drones are emerging as an effective alternative to solve the problem of labor shortage and reduce the input cost. In this study therefore, we proposed the fruit recognition algorithm and harvesting mechanism for fruit harvesting drone system that can safely harvest fruits at high positions. In the fruit recognition algorithm, we employ "You-Only-Look-Once" which is a deep learning-based object detection algorithm and verify its feasibility by establishing a virtual simulation environment. In addition, we propose the fruit harvesting mechanism which can be operated by a single driving motor. The rotational motion of the motor is converted into a linear motion by the scotch yoke, and the opened gripper moves forward, grips a fruit and rotates it for harvesting. The feasibility of the proposed mechanism is verified by performing Multi-body dynamics analysis.

Study on Establishment of a Monitoring System for Long-term Behavior of Caisson Quay Wall (케이슨 안벽의 장기 거동 모니터링 시스템 구축 연구 )

  • Tae-Min Lee;Sung Tae Kim;Young-Taek Kim;Jiyoung Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.40-48
    • /
    • 2023
  • In this paper, a sensor-based monitoring system was established to analyze the long-term behavioral characteristics of the caisson quay wall, a representative structural type in port facilities. Data was collected over a period of approximately 10 months. Based on existing literature, anomalous behaviors of port facilities were classified, and a measurement system was selected to detect them. Monitoring systems were installed on-site to periodically collect data. The collected data was transmitted and stored on a server through LTE network. Considering the site conditions, inclinometers for measuring slope and crack meters for measuring spacing and settlement were installed. They were attached to two caissons for comparison between different caissons. The correlation among measured data, temperature, and tidal level was examined. The temperature dominated the spacing and settlement data. When the temperature changed by approximately 50 degrees, the spacing changed by 10 mm, the settlement by 2 mm, and the slope by 0.1 degrees. On the other hand, there was no clear relationship with tidal level, indicating a need for more in-depth analysis in the future. Based on the characteristics of these collected database, it will be possible to develop algorithms for detecting abnormal states in gravity-type quay walls. The acquisition and analysis of long-term data enable to evaluate the safety and usability of structures in the event of disasters and emergencies.

CNN Model-based Arrhythmia Classification using Image-typed ECG Data (이미지 타입의 ECG 데이터를 사용한 CNN 모델 기반 부정맥 분류)

  • Yeon-Suk Bang;Myung-Soo Jang;Yousik Hong;Sang-Suk Lee;Jun-Sang Yu;Woo-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.205-212
    • /
    • 2023
  • Among cardiac diseases, arrhythmias can lead to serious complications such as stroke, heart attack, and heart failure if left untreated, so continuous and accurate ECG monitoring is crucial for clinical care. However, the accurate interpretation of electrocardiogram (ECG) data is entirely dependent on medical doctors, which requires additional time and cost. Therefore, this paper proposes an arrhythmia recognition module for the purpose of developing a medical platform through the analysis of abnormal pulse waveforms based on Lifelogs. The proposed method is to convert ECG data into image format instead of time series data, apply visual pattern recognition technology, and then detect arrhythmia using CNN model. In order to validate the arrhythmia classification of the CNN model by image type conversion of ECG data proposed in this paper, the MIT-BIH arrhythmia dataset was used, and the result showed an accuracy of 97%.

Bridge Safety Determination Edge AI Model Based on Acceleration Data (가속도 데이터 기반 교량 안전 판단을 위한 Edge AI 모델)

  • Jinhyo Park;Yong-Geun Hong;Joosang Youn
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.1-11
    • /
    • 2024
  • Bridges crack and become damaged due to age and external factors such as earthquakes, lack of maintenance, and weather conditions. With the number of aging bridge on the rise, lack of maintenance can lead to a decrease in safety, resulting in structural defects and collapse. To prevent these problems and reduce maintenance costs, a system that can monitor the condition of bridge and respond quickly is needed. To this end, existing research has proposed artificial intelligence model that use sensor data to identify the location and extent of cracks. However, existing research does not use data from actual bridge to determine the performance of the model, but rather creates the shape of the bridge through simulation to acquire data and use it for training, which does not reflect the actual bridge environment. In this paper, we propose a bridge safety determination edge AI model that detects bridge abnormalities based on artificial intelligence by utilizing acceleration data from bridge occurring in the field. To this end, we newly defined filtering rules for extracting valid data from acceleration data and constructed a model to apply them. We also evaluated the performance of the proposed bridge safety determination edge AI model based on data collected in the field. The results showed that the F1-Score was up to 0.9565, confirming that it is possible to determine safety using data from real bridge, and that rules that generate similar data patterns to real impact data perform better.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

Anisotrpic radar crosshole tomography and its applications (이방성 레이다 시추공 토모그래피와 그 응용)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.21-36
    • /
    • 2005
  • Although the main geology of Korea consists of granite and gneiss, it Is not uncommon to encounter anisotropy Phenomena in crosshole radar tomography even when the basement is crystalline rock. To solve the anisotropy Problem, we have developed and continuously upgraded an anisotropic inversion algorithm assuming a heterogeneous elliptic anisotropy to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. In this paper, we discuss the developed algorithm and introduce some case histories on the application of anisotropic radar tomography in Korea. The first two case histories were conducted for the construction of infrastructure, and their main objective was to locate cavities in limestone. The last two were performed In a granite and gneiss area. The anisotropy in the granite area was caused by fine fissures aligned in the same direction, while that in the gneiss and limestone area by the alignment of the constituent minerals. Through these case histories we showed that the anisotropic characteristic itself gives us additional important information for understanding the internal status of basement rock. In particular, the anisotropy ratio defined by the normalized difference between maximum and minimum velocities as well as the direction of maximum velocity are helpful to interpret the borehole radar tomogram.

  • PDF

Identification of Quaternary Faults and shallow gas pockets through high-resolution reprocessing in the East Sea, Korea (탄성파 자료 고해상도 재처리를 통한 동해해역의 제4기 단층 및 천부 가스 인지)

  • Jeong, Mi Suk;Kim, Gi Yeong;Heo, Sik;Kim, Han Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 1999
  • High-resolution images are drawn from existing seismic data which were originally obtained by Korea Ocean Research & Development Institute (KORDI) during 1994-1997 for deep seismic studies on the East Sea of Korea. These images are analyzed for mapping Quaternary faults and near-bottom gas pockets. First 12 channels are selected from shot gathers for reprocessing. The processing sequence adopted for high-resolution seismic images comprises data copy, trace editing, true amplitude recovery, common-midpoint sorting, initial muting, prestack deconvolution, bandpass filtering, stacking, highpass filtering, poststack deconvolution, f-x migration, and automatic gain control (AGC). Among these processing steps, predictive deconvolution, highpass filtering, and short window AGC are the most significant in enhancement of resolution. More than 200 Quaternanry faults are interpreted on the migrated sections in the shallow depths beneath the seafloor. Although numerous faults are found mostly at the western continental slope and boundaries of the Ulleung Basin, significant amount of the faults are also indicated within the basin. Many of these faults are believed to be formed with reactivation of basement, from geotectonic activities including volcanism, and often originated in Tertiary, indicating that the tectonic regime of the East Sea might be unstable. Existence of shallow gas pockets casts real hazardous warnings to deep-sea drillings and/or to underwater constructions such as inter-island cables and gas pipelines. On the other hand, discovery of these gas pockets heightens the interests in developing natural resources in the East Sea. Reprocessed seismic sections, however, show no typical seismic characteristics for gas hydrates such as bottom-simulating reflectors in the western continental slope and ocean floor.

  • PDF