• Title/Summary/Keyword: 이상폭발

Search Result 390, Processing Time 0.024 seconds

On the two phase detonation in carbon laden oxygen : taking into account of inner particle temperature distribution (입자온도 분포를 고려한 탄소입자와 산소에서의 이상폭발현상에 관한 연구)

  • 승성표;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1104-1112
    • /
    • 1988
  • In this study the structure of a two phase detonation has been numerically investigated through the assumption of a steady and one-dimensional flow in the suspension of carbon particles and pure oxygen. The bow shock formation in front of carbon particles has been taken into consideration when the relative velocity of gas flow with respect to the particle exceeds the local speed of sound. But its effect was found to be very limited to the induction zone only. Furthermore the interior particle temperature distribution has been considered in this work. It was found that the inner temperature gradient was very steep in the region of high relative velocity. On the while the temperature distribution inside the particle was almost uniform in the region of low relative velocity. Overall, the effect of the interior particle temperature distribution has been significant in the two phase detonation.

Hydrogen explosion effects at a containment building following a severe accident (중대사고시 수소폭발이 격납건물에 미치는 영향)

  • Ryu, Myeong-Rok;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.165-173
    • /
    • 2016
  • On March 11, 2011, a massive earthquake measuring 9.0 on the Richter scale and subsequent 10-.14 m waves struck the Fukushima Daiichi (FD) Nuclear Power Plant. The main and backup electric power was damaged preventing the cooling system from functioning. Fuel rods overheated and led to hydrogen explosions. If heat in the fuel rods is not dissipated, the nuclear fuel coating material (e.g., Zircaloy) reacts with water vapor to generate hydrogen at high temperatures. This hydrogen is released into the containment area. If the released hydrogen burns, the stability of the containment area is significantly impacted. In this study, researchers performed an explosion analysis in a high-risk explosion area, analyzing the hydrogen distribution in a containment building [1] and the effects of a hydrogen explosion on containment safety. Results indicated that a hydrogen explosion was possible throughout the containment building except the middle area. If an explosion occurs at the top of the containment building with more than 40% of the hydrogen collected or in the bottom right or left side of the of containment building, safety of the containment building could be threatened.

에멀젼 폭약의 폭속변화에 따른 진동특성 연구

  • Gang, Dae-U;An, Bong-Do
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.351-357
    • /
    • 2007
  • We have compared a special character(pressure of explosion, gas volume, energy of explosion, temperature of explosion, strength) of different three emulsion explosives which is different velocity by Nitrodyn program that is calculated explosion reaction. We have analyzed the character of the vibration from a vibration data which is a result from test blasting in different velocity of detonation for three emulsion explosives of the same size(17mm) in the same rock. As a result, the vibration is decreased when the velocity of detonation is decreased within 40m from origin of explosion but it is familiar character over 40m, so there isn't much affect the velocity of detonation in decreased vibration over 40m.

  • PDF

A Study on the Propagation Characteristics of Acoustic Signals radiated by Explosive Charges (폭발성 음원의 음향신호 전파특성에 관한 고찰)

  • Choi Bok Kyoung;Kim Bong-Chae;Kim Byoung-Nam
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.199-202
    • /
    • 2004
  • 해양에서 연구목적으로 저주파 음원으로 사용하고 있는 폭발성 음원(SUS: Signals, Underwater Sound)의 신호특성을 파악하기 위해 1999년 9월에 동해의 대륙사면에서 1마일에서 80 마일까지 약 1에서 5마일의 정해진 간격으로 SUS를 투하하여 발생된 음향신호를 거리 및 수신수심별로 수신하였다. 주파수 필터를 사용하여 분석한 결과, 1 kHz이상의 고주파수 성분이 폭발시에 먼저 방출되며 저주파수 신호는 뒤이어 발생됨을 확인하였다. 이것은 폭약이 폭발시에 일어나는 메카니즘과 관련이 있는 것으로 사료된다. 거리의 증가에 따라 잔향의 영향을 받아 뒤이어 수신되는 파속(wave packet)들을 확인할 수 있었으며, 신호에 많은 영향을 주고 있었으나 잔향 분석은 여기서는 제외하였다. 본 연구는 실해역에서의 SUS신호에 관한 많은 자료를 분석한 것으로서 그 신호특성에 관한 이번 고찰은 해양음파전달시 사용하는 SUS 음향신호 해석에 많은 도움을 줄 것으로 기대한다.

  • PDF

Structural Safety Assessment of Offshore Structure under Explosion Loadings (해양구조물의 폭발하중에 의한 구조 안전성 평가 기법 연구)

  • Lee, Sang-Gab;Cho, Heon-Il;Hong, Anh;Kim, Jin-Kyung;Kim, Gyu-Sung;Lee, Kun-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.203-208
    • /
    • 2011
  • 본 논문에서는 해양시추 생산설비의 상부구조(topside structure)에 설치된 공정설비(process module)에서 가스 누출에 의한 가스폭발 하중에 대한 해양구조물의 비선형 동적 거동응답 특성파악을 파악하기 위하여 LS-DYNA 코드의 유체-구조 연성(Fluid-Strycture Interaction) 해석기법을 적용하여 폭발 압력파를 보다 정확하게 구현하기 위한 기법을 개발하고자 한다.

  • PDF

Study on the Performance Evaluation of the Explosive Bolt that has been Natural Aging (자연 노화된 폭발볼트의 성능 평가에 관한 연구)

  • Kim, Dongjin;Jeong, Donghee;Lee, Yeungjo;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.84-90
    • /
    • 2017
  • Explosive bolt is coupled in a variety of guided weapons and space projectiles, to perform the separation function. Thus, the role of the explosive bolt in guided weapons systems is very important, as it can cause failure of the entire system in the case of mission failure. For this reason, the design life prediction for explosive bolt is highly and frequently required recently, but its accurate prediction method has not been presented. In order to apply the existing accelerated aging process, we should know the activation energy and the acceleration factor of the explosive bolt. Since the information required for accelerated aging is not presently secured, it is difficult to predict the design life of explosive. Thus, in the present study, we have evaluated the performance of actual explosive bolts in the condition of natural aging over 10 years in order to present a minimum design life.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Analysis on the Risk of Explosive Terror in Domestic Buildings (국내 건물의 폭발물 테러 위험도 요인 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2012
  • According to the global status of terroristic acts occurred from 2002 to 2010, 10,431(nearly 52.2%) of 19,946 cases have happened by bomb blasts, and 10,431(nearly 52.2%) of weapons used for terrorism were explosive substances Therefore, this study analyzed the terrorism risks of buildings according to height through FEMA 455 - rapid visual screening. As a result, the higher the building is, the higher the terror risk gets. It shows that total risk increases proportionally to buildings's height. In case of buildings over 100 meter high, the total risk is most affected by threat items. According to the risk of explosion associated with the scenario analysis, buildings over 100 meter high have high risks of Internal-Explosive.