스마트공장 구축사업을 통해 제조업의 생산설비에 센서가 설치되고 각종 공정데이터를 실시간으로 수집할 수 있게 되었다. 이를 통해 제조공정의 설비이상으로 인한 생산중단을 줄이기 위해 실시간 설비 이상 탐지에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 생산설비의 이상탐지를 위해 제조데이터를 딥러닝 모델인 Autoencoder(AE), VAE(Variational Autoencoder), AAE(Adversarial Autoencoder)에 적용하여 그 결과를 도출하였다. 제조데이터는 단순 이동 평균 기법과 전처리 과정을 거쳐 입력데이터로 사용하였으며, 단순이동평균 기법의 윈도우 크기와 AE 모델의 특징벡터 크기에 따른 성능분석을 실시하였다.
회귀분석에서 이분산이 발생할 경우 표준적 추정절차에 따른 결과는 유효하지 않게 되므로 이를 확인하는 것이 필요하다. 이분산 문제와 더불어 이상치가 함께 존재하면 이분산에 관한 진단은 왜곡될 수 있다. 이상치가 존재할 때 이분산을 진단하는 기존의 방법들은 강건통계량을 이용하거나 이상치를 제거하는 접근법을 사용한다. 이분산 문제에서 이상치를 탐지하기 위하여 여러 가지 접근법이 제시되었다. 본 연구에서는 이분산 진단과정에서 이상치를 배제하기 위하여 기존의 이분산 검정과정에 순차적 이상치 탐지법을 적용하는 절차를 제시한다. 제시된 방법은 모의실험 및 예제를 통해 기존의 검정방법과 검정력을 비교한다.
신규 및 변종 악성코드의 발생으로 모바일, IoT, windows, mac 등 여러 환경에서 악성코드 침해 공격이 지속적으로 증가하고 있으며, 시그니처 기반 탐지의 대응만으로는 악성코드 탐지에 한계가 존재한다. 또한, 난독화, 패킹, Anti-VM 기법의 적용으로 분석 성능이 저하되고 있는 실정이다. 이에 유사성 해시 기반의 패턴 탐지 기술과 패킹에 따른 파일 분류 후의 정적 분석 적용으로 기계학습 기반 악성코드 식별이 가능한 시스템을 제안한다. 이는 기존에 알려진 악성코드의 식별에 강한 패턴 기반 탐지와 신규 및 변종 악성코드 탐지에 유리한 기계학습 기반 식별 기술을 모두 활용하여 보다 효율적인 탐지가 가능하다. 본 연구 결과물은 정보보호 R&D 데이터 챌린지 2018 대회의 AI기반 악성코드 탐지 트랙에서 제공하는 정상파일과 악성코드를 대상으로 95.79% 이상의 탐지정확도를 도출하여 분석 성능을 확인하였다. 향후 지속적인 연구를 통해 패킹된 파일의 특성에 맞는 feature vector와 탐지기법을 추가 적용하여 탐지 성능을 높이는 시스템 구축이 가능할 것으로 기대한다.
본 논문에서는 웹쉘 악성코드를 정확하게 분류하고, 빠른시간안에 자동으로 웹쉘 분류 및 분석을 통하여 웹쉘을 탐지하기 위하여 인공지능 머신러닝 기반의 Supervised AI ML 및 Classification 알고리즘을 적용하여 빠른 시간안에 분류, 정확한 분석을 통하여 자동화된 탐지시스템인 MWSDS를 제안하고 웹쉘 실험 데이터를 통하여 실증하였다. 본제안의 경우 웹쉘악성코드 공격에 대한 대응뿐만아니라 관리적인 정보보호 체계수립을 통하여 보다 효과적이며, 지속적으로 대응할 수 있을 것으로 전망된다.
최근, Verizon(2010), 농협(2011), SK컴즈(2011), 그리고 3.20 사이버 테러(2013)와 같이 소중한 정보가 누출되고 자산에 피해가 발생한 후에야 보안 공격을 인지하는 APT (Advanced Persistent Threat) 공격 사례가 증가하고 있다. 이러한 APT 공격을 해결하고자 이상 행위 탐지 기술 관련 연구가 일부 진행되고 있으나, 대부분 알려진 악성 코드의 시그너쳐 기반으로 명백한 이상 행위를 탐지하는데 초점을 맞추고 있어서, 장기간 잠복하며 제로데이 취약점을 이용하고, 새로운 또는 변형된 악성 코드를 일관되게 사용하는 APT 공격에는 취약하여, 미탐율이 굉장히 높은 문제들을 겪고 있다. APT 공격을 탐지하기 위해서는 다양한 소스로부터 장기간에 걸쳐 대규모 데이터를 수집, 처리 및 분석하는 기술과, 데이터를 수집 즉시 실시간 분석하는 기술, 그리고 개별 공격들 간의 상관(correlation) 분석 기술이 동시에 요구되나, 기존 보안 시스템들은 이러한 복잡한 분석 능력이나 컴퓨팅 파워, 신속성 등이 부족하다. 본 논문에서는 기존 시스템들의 실시간 처리 및 분석 한계를 극복하기 위해, 패스트 데이터 기반 실시간 비정상 행위 탐지 시스템을 제안한다.
반도체 제조 산업에서는 Big Data에 기초한 Smart Factory 도입과 적용이 가시화되면서 생산 공정의 각 단계에서 수집 가능한 다양한 센서(sensor) 데이터를 활용하여 공정 이상 탐지 및 최종 수율 예측 등에 다양한 분석 방법을 시도하고 있다. 현재 반도체 공정은 원료인 잉곳(ingot)에서 패키징(packaging) 작업 이전의 웨이퍼(wafer) 생산까지 500 600개 이상의 세부 공정과 이와 연계된 수천 개의 계측 공정으로 구성된다. 개별 계측 공정 내의 실제 계측 비율은 대상 제품 대비 0.1%에서 최대 5%를 넘지 못하고 계측 시점별로 일정하게 유지할 수 없다. 이러한 이유로 공정 각 단계의 정상 상태를 간접적으로 판단할 수 있는 장비 센서(sensor) 데이터를 활용하여 관리 여부를 판단하고자 하는 노력이 계속되고 있다. 본 연구에서는 장비 센서 데이터 기반의 공정 이상 탐지 프로세스를 정의하고 현재 적용 되고 있는 기술 통계량 기반 진단 방법의 단점을 보완하기 위해 FDA(Functional Data Analysis)방법을 활용하였다. 실제 현장 사례 데이터에 머신러닝을 이용하여 이상 탐지 정확도 비교를 통해 효과성을 검증하였다.
한국원자력연구원은 심부 암반의 수리/지화학 특성 분석을 위해 KURT (KAERI Underground Research Tunnel)를 건설하였고, 다수의 조사용 시추공을 시추하여 각종 시험을 수행 중이다. 시추공 조사에서 목적에 적합한 조사 구간 선정은 매우 중요하며 수리 유동 파악 및 지하수 채수가 목적인 경우, 유량이 풍부한 구간이 조사 목적에 부합한다. 본 연구에서는 이러한 구간을 수리 이상점으로 정의했으며, 심도 1km 수준의 시추공 물리검층 자료(온도, 전기전도도)를 활용하여 이를 탐지하고자 하였다. 체계적이고 효율적인 이상점 탐지를 위해 기계학습 알고리즘 중 DBSCAN, OCSVM, kNN, isolation forest을 적용하고 그 적용성을 파악하였다. 데이터 전처리와 알고리즘 최적화를 수행했으며, 그 결과 네 가지 알고리즘은 각각 55, 12, 52, 68개의 수리 이상점을 탐지하였다. 본 논문을 통해 기계학습 알고리즘의 활용 가능성을 확인했으나, 학습에 활용된 입력자료가 제한적이었기 때문에, 향후 추가적인 검증과 보완이 바람직한 것으로 판단된다.
악성코드 사고 조사에서 가장 중요한 것은 신속하게 악성코드를 탐지하고 수집하는 것이다. 기존의 조사 방법은 시그니쳐 기반의 안티바이러스 소프트웨어를 이용하는 것이다. 시그니쳐 기반의 탐지는 실행파일 패킹, 암호화 등을 통해 쉽게 탐지를 회피할 수 있다. 그렇기 때문에 악성코드 조사에서 패킹을 탐지하는 것도 중요한 일이다. 패킹탐지는 패킹 시그니쳐 기반과 엔트로피 기반의 탐지 방법이 있다. 패킹 시그니쳐기반의 탐지는 새로운 패킹을 탐지하지 못하는 문제가 있다. 그리고 엔트로피 기반의 탐지 방법은 오탐의 문제가 존재한다. 본 논문에서는 진입점 섹션의 엔트로피 통계와 패킹의 필수적인 특징인 'write' 속성을 이용하여 패킹을 탐지하는 기법을 제시한다. 그리고 패킹 PE 파일을 탐지하는 도구를 구현하고 도구의 성능을 평가한다.
주어진 데이터에서 대부분의 다른 관측치들에 비해 지나치게 크거나 작은 관측치를 이상치라고 한다. 이상치는 몇 가지 원인에 의해 발생한다. 이상치를 포함한 데이터의 분석결과는 이 값을 포함하지 않은 경우와 크게 달라질 수 있다. 일반적으로 이상치는 탐지를 통하여 찾아내어 제거한 후에 데이터분석을 수행한다. 하지만 사기탐지, 네트워크 침입 등의 데이터 마이닝 분야에서는 이상치가 중요한 정보를 포함하고 있기 때문에 반드시 포함하여 데이터분석을 수행하여야 한다. 본 논문에서 다루는 회귀모형에서는 기존의 단순, 다중 회귀분석은 이상치에 대하여 안정된 모형을 구축하기 어렵기 때문에 표준화 잔차 또는 스튜던트화된 잔차를 이용하여 이상치를 찾아내고 제거한 후의 데이터분석 수행을 추천한다. 본 논문에서는 회귀모형에서 이상치를 포함하여 효과적으로 데이터분석을 수행할 수 있는 한 방법으로 Vapnik이 제안한 통계적 학습이론에 기반한 Support Vector Regression(SVR)을 이용하였다 인공 데이터를 생성한 모의실험 결과 기존의 회귀모형에 비해 SVR의 향상된 결과를 확인할 수 있었다.
다변량 시계열 이상 탐지 과업에서 정답 값이 존재하는 데이터를 얻는 것은 매우 시간 집약적인 일이다. 따라서 최근 정답 값이 필요 없는 비지도 학습법(unsupervised learning)에 관한 많은 연구가 진행되었다. 하지만 다변량 시계열 이상 탐지 과업에 특화된 주요 구조와 세부적인 특성에 대한 심화 있는 논의는 이루어지지 않았다. 본 논문에서는 비지도 학습 기반의 다변량 시계열 이상 탐지 모델과 특장점을 포괄적으로 분석하여 분류하였다. 전력 계통(power grid) 또는 Cyber Physical System(CPS)과 같은 현실 세계 데이터 집합에서 현실적인 이상 상황을 고려하여 학습을 진행하였고, 실험 결과를 바탕으로 각 모델의 정량적 성능을 비교 분석하였다. 성능 지표로는 정밀도(precision), 재현율(recall)과 F1 점수를 사용하여 성능을 측정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.