• 제목/요약/키워드: 이상탐지분석

검색결과 610건 처리시간 0.024초

딥러닝을 활용한 설비 이상 탐지 및 성능 분석 (Anomaly Detection and Performance Analysis using Deep Learning)

  • 황주효;진교홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.78-81
    • /
    • 2021
  • 스마트공장 구축사업을 통해 제조업의 생산설비에 센서가 설치되고 각종 공정데이터를 실시간으로 수집할 수 있게 되었다. 이를 통해 제조공정의 설비이상으로 인한 생산중단을 줄이기 위해 실시간 설비 이상 탐지에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 생산설비의 이상탐지를 위해 제조데이터를 딥러닝 모델인 Autoencoder(AE), VAE(Variational Autoencoder), AAE(Adversarial Autoencoder)에 적용하여 그 결과를 도출하였다. 제조데이터는 단순 이동 평균 기법과 전처리 과정을 거쳐 입력데이터로 사용하였으며, 단순이동평균 기법의 윈도우 크기와 AE 모델의 특징벡터 크기에 따른 성능분석을 실시하였다.

  • PDF

이상치 탐지법을 이용한 강건 이분산 검정 (Robust tests for heteroscedasticity using outlier detection methods)

  • 서한손;윤민
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.399-408
    • /
    • 2016
  • 회귀분석에서 이분산이 발생할 경우 표준적 추정절차에 따른 결과는 유효하지 않게 되므로 이를 확인하는 것이 필요하다. 이분산 문제와 더불어 이상치가 함께 존재하면 이분산에 관한 진단은 왜곡될 수 있다. 이상치가 존재할 때 이분산을 진단하는 기존의 방법들은 강건통계량을 이용하거나 이상치를 제거하는 접근법을 사용한다. 이분산 문제에서 이상치를 탐지하기 위하여 여러 가지 접근법이 제시되었다. 본 연구에서는 이분산 진단과정에서 이상치를 배제하기 위하여 기존의 이분산 검정과정에 순차적 이상치 탐지법을 적용하는 절차를 제시한다. 제시된 방법은 모의실험 및 예제를 통해 기존의 검정방법과 검정력을 비교한다.

정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구 (A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique)

  • 김수정;하지희;오수현;이태진
    • 정보보호학회논문지
    • /
    • 제29권4호
    • /
    • pp.775-784
    • /
    • 2019
  • 신규 및 변종 악성코드의 발생으로 모바일, IoT, windows, mac 등 여러 환경에서 악성코드 침해 공격이 지속적으로 증가하고 있으며, 시그니처 기반 탐지의 대응만으로는 악성코드 탐지에 한계가 존재한다. 또한, 난독화, 패킹, Anti-VM 기법의 적용으로 분석 성능이 저하되고 있는 실정이다. 이에 유사성 해시 기반의 패턴 탐지 기술과 패킹에 따른 파일 분류 후의 정적 분석 적용으로 기계학습 기반 악성코드 식별이 가능한 시스템을 제안한다. 이는 기존에 알려진 악성코드의 식별에 강한 패턴 기반 탐지와 신규 및 변종 악성코드 탐지에 유리한 기계학습 기반 식별 기술을 모두 활용하여 보다 효율적인 탐지가 가능하다. 본 연구 결과물은 정보보호 R&D 데이터 챌린지 2018 대회의 AI기반 악성코드 탐지 트랙에서 제공하는 정상파일과 악성코드를 대상으로 95.79% 이상의 탐지정확도를 도출하여 분석 성능을 확인하였다. 향후 지속적인 연구를 통해 패킹된 파일의 특성에 맞는 feature vector와 탐지기법을 추가 적용하여 탐지 성능을 높이는 시스템 구축이 가능할 것으로 기대한다.

머신러닝기반의 지도학습과 분류 알고리즘을 적용한 웹쉘 탐지시스템(MWSDS)제안 연구 (Proposal and empirical study of web shell detection system (MWSDS) applying machine learning-based supervised learning and classification)

  • 김기환;이상도;신용태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.49-50
    • /
    • 2024
  • 본 논문에서는 웹쉘 악성코드를 정확하게 분류하고, 빠른시간안에 자동으로 웹쉘 분류 및 분석을 통하여 웹쉘을 탐지하기 위하여 인공지능 머신러닝 기반의 Supervised AI ML 및 Classification 알고리즘을 적용하여 빠른 시간안에 분류, 정확한 분석을 통하여 자동화된 탐지시스템인 MWSDS를 제안하고 웹쉘 실험 데이터를 통하여 실증하였다. 본제안의 경우 웹쉘악성코드 공격에 대한 대응뿐만아니라 관리적인 정보보호 체계수립을 통하여 보다 효과적이며, 지속적으로 대응할 수 있을 것으로 전망된다.

  • PDF

패스트 데이터 기반 실시간 비정상 행위 탐지 시스템 (Real-time Abnormal Behavior Detection System based on Fast Data)

  • 이명철;문대성;김익균
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1027-1041
    • /
    • 2015
  • 최근, Verizon(2010), 농협(2011), SK컴즈(2011), 그리고 3.20 사이버 테러(2013)와 같이 소중한 정보가 누출되고 자산에 피해가 발생한 후에야 보안 공격을 인지하는 APT (Advanced Persistent Threat) 공격 사례가 증가하고 있다. 이러한 APT 공격을 해결하고자 이상 행위 탐지 기술 관련 연구가 일부 진행되고 있으나, 대부분 알려진 악성 코드의 시그너쳐 기반으로 명백한 이상 행위를 탐지하는데 초점을 맞추고 있어서, 장기간 잠복하며 제로데이 취약점을 이용하고, 새로운 또는 변형된 악성 코드를 일관되게 사용하는 APT 공격에는 취약하여, 미탐율이 굉장히 높은 문제들을 겪고 있다. APT 공격을 탐지하기 위해서는 다양한 소스로부터 장기간에 걸쳐 대규모 데이터를 수집, 처리 및 분석하는 기술과, 데이터를 수집 즉시 실시간 분석하는 기술, 그리고 개별 공격들 간의 상관(correlation) 분석 기술이 동시에 요구되나, 기존 보안 시스템들은 이러한 복잡한 분석 능력이나 컴퓨팅 파워, 신속성 등이 부족하다. 본 논문에서는 기존 시스템들의 실시간 처리 및 분석 한계를 극복하기 위해, 패스트 데이터 기반 실시간 비정상 행위 탐지 시스템을 제안한다.

Smart Factory Big Data를 활용한 공정 이상 탐지 프로세스 적용 사례 연구 (A case study on the application of process abnormal detection process using big data in smart factory)

  • 남현우
    • 응용통계연구
    • /
    • 제34권1호
    • /
    • pp.99-114
    • /
    • 2021
  • 반도체 제조 산업에서는 Big Data에 기초한 Smart Factory 도입과 적용이 가시화되면서 생산 공정의 각 단계에서 수집 가능한 다양한 센서(sensor) 데이터를 활용하여 공정 이상 탐지 및 최종 수율 예측 등에 다양한 분석 방법을 시도하고 있다. 현재 반도체 공정은 원료인 잉곳(ingot)에서 패키징(packaging) 작업 이전의 웨이퍼(wafer) 생산까지 500 600개 이상의 세부 공정과 이와 연계된 수천 개의 계측 공정으로 구성된다. 개별 계측 공정 내의 실제 계측 비율은 대상 제품 대비 0.1%에서 최대 5%를 넘지 못하고 계측 시점별로 일정하게 유지할 수 없다. 이러한 이유로 공정 각 단계의 정상 상태를 간접적으로 판단할 수 있는 장비 센서(sensor) 데이터를 활용하여 관리 여부를 판단하고자 하는 노력이 계속되고 있다. 본 연구에서는 장비 센서 데이터 기반의 공정 이상 탐지 프로세스를 정의하고 현재 적용 되고 있는 기술 통계량 기반 진단 방법의 단점을 보완하기 위해 FDA(Functional Data Analysis)방법을 활용하였다. 실제 현장 사례 데이터에 머신러닝을 이용하여 이상 탐지 정확도 비교를 통해 효과성을 검증하였다.

시추공 수리 이상점 탐지를 위한 기계학습 알고리즘의 적용성 연구 (A Study on the Applicability of Machine Learning Algorithms for Detecting Hydraulic Outliers in a Borehole)

  • 최승범;박경우;이창수
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.561-573
    • /
    • 2023
  • 한국원자력연구원은 심부 암반의 수리/지화학 특성 분석을 위해 KURT (KAERI Underground Research Tunnel)를 건설하였고, 다수의 조사용 시추공을 시추하여 각종 시험을 수행 중이다. 시추공 조사에서 목적에 적합한 조사 구간 선정은 매우 중요하며 수리 유동 파악 및 지하수 채수가 목적인 경우, 유량이 풍부한 구간이 조사 목적에 부합한다. 본 연구에서는 이러한 구간을 수리 이상점으로 정의했으며, 심도 1km 수준의 시추공 물리검층 자료(온도, 전기전도도)를 활용하여 이를 탐지하고자 하였다. 체계적이고 효율적인 이상점 탐지를 위해 기계학습 알고리즘 중 DBSCAN, OCSVM, kNN, isolation forest을 적용하고 그 적용성을 파악하였다. 데이터 전처리와 알고리즘 최적화를 수행했으며, 그 결과 네 가지 알고리즘은 각각 55, 12, 52, 68개의 수리 이상점을 탐지하였다. 본 논문을 통해 기계학습 알고리즘의 활용 가능성을 확인했으나, 학습에 활용된 입력자료가 제한적이었기 때문에, 향후 추가적인 검증과 보완이 바람직한 것으로 판단된다.

악성코드 포렌식을 위한 패킹 파일 탐지에 관한 연구 (Packed PE File Detection for Malware Forensics)

  • 한승원;이상진
    • 정보처리학회논문지C
    • /
    • 제16C권5호
    • /
    • pp.555-562
    • /
    • 2009
  • 악성코드 사고 조사에서 가장 중요한 것은 신속하게 악성코드를 탐지하고 수집하는 것이다. 기존의 조사 방법은 시그니쳐 기반의 안티바이러스 소프트웨어를 이용하는 것이다. 시그니쳐 기반의 탐지는 실행파일 패킹, 암호화 등을 통해 쉽게 탐지를 회피할 수 있다. 그렇기 때문에 악성코드 조사에서 패킹을 탐지하는 것도 중요한 일이다. 패킹탐지는 패킹 시그니쳐 기반과 엔트로피 기반의 탐지 방법이 있다. 패킹 시그니쳐기반의 탐지는 새로운 패킹을 탐지하지 못하는 문제가 있다. 그리고 엔트로피 기반의 탐지 방법은 오탐의 문제가 존재한다. 본 논문에서는 진입점 섹션의 엔트로피 통계와 패킹의 필수적인 특징인 'write' 속성을 이용하여 패킹을 탐지하는 기법을 제시한다. 그리고 패킹 PE 파일을 탐지하는 도구를 구현하고 도구의 성능을 평가한다.

Support Vector Regression을 이용한 이상치 데이터분석 (An Outlier Data Analysis using Support Vector Regression)

  • 전성해
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.876-880
    • /
    • 2008
  • 주어진 데이터에서 대부분의 다른 관측치들에 비해 지나치게 크거나 작은 관측치를 이상치라고 한다. 이상치는 몇 가지 원인에 의해 발생한다. 이상치를 포함한 데이터의 분석결과는 이 값을 포함하지 않은 경우와 크게 달라질 수 있다. 일반적으로 이상치는 탐지를 통하여 찾아내어 제거한 후에 데이터분석을 수행한다. 하지만 사기탐지, 네트워크 침입 등의 데이터 마이닝 분야에서는 이상치가 중요한 정보를 포함하고 있기 때문에 반드시 포함하여 데이터분석을 수행하여야 한다. 본 논문에서 다루는 회귀모형에서는 기존의 단순, 다중 회귀분석은 이상치에 대하여 안정된 모형을 구축하기 어렵기 때문에 표준화 잔차 또는 스튜던트화된 잔차를 이용하여 이상치를 찾아내고 제거한 후의 데이터분석 수행을 추천한다. 본 논문에서는 회귀모형에서 이상치를 포함하여 효과적으로 데이터분석을 수행할 수 있는 한 방법으로 Vapnik이 제안한 통계적 학습이론에 기반한 Support Vector Regression(SVR)을 이용하였다 인공 데이터를 생성한 모의실험 결과 기존의 회귀모형에 비해 SVR의 향상된 결과를 확인할 수 있었다.

다변량 시계열 이상 탐지 과업에서 비지도 학습 모델의 성능 비교 (A Survey on Unsupervised Anomaly Detection for Multivariate Time Series)

  • 임주완;이재구
    • 정보보호학회논문지
    • /
    • 제33권1호
    • /
    • pp.1-12
    • /
    • 2023
  • 다변량 시계열 이상 탐지 과업에서 정답 값이 존재하는 데이터를 얻는 것은 매우 시간 집약적인 일이다. 따라서 최근 정답 값이 필요 없는 비지도 학습법(unsupervised learning)에 관한 많은 연구가 진행되었다. 하지만 다변량 시계열 이상 탐지 과업에 특화된 주요 구조와 세부적인 특성에 대한 심화 있는 논의는 이루어지지 않았다. 본 논문에서는 비지도 학습 기반의 다변량 시계열 이상 탐지 모델과 특장점을 포괄적으로 분석하여 분류하였다. 전력 계통(power grid) 또는 Cyber Physical System(CPS)과 같은 현실 세계 데이터 집합에서 현실적인 이상 상황을 고려하여 학습을 진행하였고, 실험 결과를 바탕으로 각 모델의 정량적 성능을 비교 분석하였다. 성능 지표로는 정밀도(precision), 재현율(recall)과 F1 점수를 사용하여 성능을 측정하였다.