다중 이상점 과 다중 지렛점의 식별은 가장효과(masking effect)와 편승효과(swamping effect)에 영향을 받으므로 어려움이 존재한다. Rousseeuw와 van Zomeren(1990)은 LMS (Least Median of Squares) 회귀방법과 MVE(Minimum Volume Ellipsoid) 통계량을 이용하여 다중 이상점과 다중 지렛점을 식별하였다. 그러나 이들의 방법은 LMS와 MVE의 강한 로버스트성으로 인하여 이상점과 지렛점이 아닌 점들도 이상점과 지렛점으로 식별하는 경향이 있다. Fung(1993)은 식별된 이상점과 지렛점들에 대하여 재확인방법을 제안하였는데 이 방법은 인근효과(adjacent effect)에 영향을 받아 이상점과 지렛점을 식별하는데 문제가 있는 것으로 분석되었다. 본 논문은 이러한 문제점을 지적하고 새로운 방법을 제안하여 식별된 이상점과 지렛점을 재확인하고자 한다.
Communications for Statistical Applications and Methods
/
제3권3호
/
pp.11-23
/
1996
본 연구에서는 선형회귀분석에서 Hadi와 Simonoff의 다중이상점 식별방법을 수정하여 새로운 알고리즘을 제시하였다. Hadi와 Simonoff의 알고리즘 첫 단계에서 이상점일 가능성이 없는 점들의 집합을 추출할 때 가장효과와 편승효과에 영향을 받을 수 있음으로, 이 첫 단계를 수정하였다. 우리는 잔차가 일정한 분산을 갖는 정규분포에 다르다는 가정하에서 잔차의 신뢰구간을 생각하고, 이 구간안에서 잔차의 MAD가 최소인 새로운 모형을 탐색하고, 이를 이상점일 가능성이 없는 점들의 집합을 추출하는데 일용하는 새로운 알로리즘을 제시하였다. 제시된 방법은 실제자료에서 다른 방법에 비해 효율적으로 이상점을 식별할 수 있었다.
로지스틱회귀에서 일반적으로 사용되는 최대우도추정법은 이상점에 대해 로버스트 하지 않다. 따라서 본 논문에서는 로지스틱회귀모형의 로버스트 추정을 위한 알고리즘을 제안하고자 한다. 이 알고리즘은 V-마스크 형태의 경계기준에 의해 나쁜 지렛점과 수직이상점을 식별하고, 식별 결과를 바탕으로 이상점의 영향력을 감소시키기 위한 효과적인 방안을 모색한다. 이상점의 영향력 감소는 가중치와 조정치를 적절히 선정함으로 가능하며, 그 결과 붕괴점이 높은 추정치를 얻게 된다. 제안된 알고리즘을 다양한 자료에 적용하여 정분류율을 측정하여 비교하였는데, 새로운 알고리즘이 최대우도추정보다 정확한 분류를 해 주는 것으로 평가되었다.
본 논문에서는 스캔된 만화의 콘텐츠 특성을 고려한 식별 및 특징 검색 시스템을 제안하였다. 스캔 만화의 특징점을 생성하기 위해서 계층적 대칭 핑거프린팅 방법을 활용하였다. 제안하는 핑거프린트 식별 및 검색 시스템은 웹하드와 같은 온라인 서비스 제공자들이 대량의 스캔만화에 대하여 즉각적인 식별 결과를 얻을 수 있도록 설계되었다. 실험에서는 회전, 이동 등의 이미지 변형에 대해서 핑거프린트의 식별 강인성에 대하여 분석하였다. 또한 특징점 데이터베이스에서의 빠른 매칭을 위한 데이터베이스 구조를 제안하였고, 전역 검색 및 최대중요특징 검색과 같은 기존의 다른 검색방법과 성능을 비교하였다.
Communications for Statistical Applications and Methods
/
제17권4호
/
pp.541-550
/
2010
$L_1$-회귀추정량이 수직이상점에 대해서는 매우 로버스트하지만 지렛점에 대해서는 전혀 로버스트하지 않다는 사실은 잘 알려져 있다. 본 논문에서는 수직이상점은 물론 지렛점에 대해서도 로버스트한 $L_1$-회귀추정을 위한 알고리즘을 제안한다. MCD 또는 MVE-추정량에 바탕을 둔 로버스트거리를 기준으로 지렛점들을 식별하고, 식별된 지렛점들의 영향력을 적절히 감소시키기 위한 가중치를 결정한다. 가중치에 의해 변환된 자료에 선형척도변환 기법에 바탕을 둔 선형계획 알고리즘을 적용함으로써 $L_1$-회귀추정량의 붕괴점을 향상시킨다. 다양한 형태와 규모의 자료에 대한 모의실험 결과, 제안된 알고리즘에 의한 $L_1$-회귀추정량의 붕괴점이 크게 향상되는 것으로 나타났다.
최근 다변량 공정관리는 다양한 응용 분야에서 중요해지고 있는 추세이다. 예를 들어, 제조 산업 분야에서는 다변량 품질특성치를 동시에 모니터링할 필요가 있다. 그러나, 다변량 관리도는 이상신호가 발생한 경우 그 원인이 되는 개별적인 변수를 식별하기가 어렵기 때문에, 실제로는 기대만큼 유용하게 쓰이고 있지 않은 형편이다. 이에 본 논문에서는 새로운 관측치에 대한 개별적인 신뢰구간을 사용하여 이상신호의 원인을 탐지하는 세 가지 방법을 소개하고, 시뮬레이션 연구를 통해 이상신호의 원인이 되는 개별적인 변수를 식별하고 해석하는 데 있어 주의할 점이 무엇인지 살펴보기로 한다.
인터넷, 모바일 등 네트워크 기술이 발전함에 따라 내외부 침입 및 위협으로부터 조직의 자원을 보호하기 위한 보안의 중요성이 커지고 있다. 따라서 최근에는 다양한 보안 로그 이벤트에 대하여 보안 위협 여부를 사전에 파악하고, 예방하는 이상징후 식별 알고리즘의 개발이 강조되고 있다. 과거 규칙 기반 또는 통계 학습에 기반하여 개발되어 온 보안 이상징후 식별 알고리즘은 점차 기계 학습과 딥러닝에 기반한 모델링으로 진화하고 있다. 본 연구에서는 다양한 기계 학습 분석 방법론을 활용하여 악의적 내부자 위협을 사전에 식별하는 최적 알고리즘으로 LSTM-autoencoder를 변형한 Deep-autoencoder 모형을 제안한다. 본 연구는 비지도 학습에 기반한 이상탐지 알고리즘 개발을 통해 적응형 보안의 가능성을 향상시키고, 지도 학습에 기반한 정탐 레이블링을 통해 기존 알고리즘 대비 오탐율을 감소시켰다는 점에서 학문적 의의를 갖는다.
표본조사에서 널리 쓰이는 모집단의 층화는 추정의 효율을 높이는 방법 중의 하나지만, 이상점을 포함하는 변수가 있는 경우에 여러 가지 문제점을 유발시킬 수 있다. 특히, 이상점이 존재하는 다변량 자료의 경우, 층화를 위한 $\kappa$-평균 군집방법은 이상점에 매우 민감하여 추정의 효율을 떨어뜨릴 수 있다. 본 연구에서는 이상점이 존재하는 다변량 자료의 층화를 위해 $\kappa$-평균 군집방법보다 강건하며 이상점을 따로 식별하는 과정이 배제된 $\kappa$-공간중위수 군집방법을 제안한다. 기존 관련연구인 박진우와 윤석훈 (2008)과 동일한 자료에 대한 사례분석을 통해 층화과정들을 비교, 검토하였으며 이들의 효율성을 추정량의 분산을 통해 비교하였다.
본 논문은 화재발생 이후에 화재현장의 조건에 따라 분전반의 주차단기 전원측 단자에서의 트래킹 현상 진행 가능성에 대하여, 화재현장 조사사례를 들어 고찰하였다. 화재현장 조사과정에서 분전반의 주차단기 전원측 단자에서 트래킹 형태가 식별됨에도 불구하고 그 부하측에서 전기적인 특이점이 식별되는 경우에는, 단순히 트래킹 형태가 식별되는 점만으로 발화원인을 판정하는 자세를 지양하고, 구체적인 연소형태를 검토하여 발화개소, 연소확대 경로 등의 해석 및 전체적인 전기계통의 고찰을 통하여, 분전반 주차단기에서의 발화원인 등을 판정해야되며, 또한, 화재현장의 정밀조사 없이 분전반 및 차단기의 조사와 해석만으로는 발화여부 또는 발화원인에 대하여 논단하는 것이 어렵다는 결론을 도출하였다.
최근 자동차는 자율주행차 혹은 스마트카로 진화하며 다양한 외부 통신 인터페이스를 포함하고 있습니다. 각 기능 통제를 위해 차량 소프트웨어의 복잡성과 자동차 기술 발전에 따라 통신 인터페이스의 증가로 인하여 자동차에 대한 사이버 공격 가능성 및 위험성이 꾸준히 증가하고 있습니다. 특히, 커넥티드카의 안전을 위한 V2X(Vehicle to Everything)통신이 보안 취약점을 가질 경우, 이는 탑승자의 생명에 직접적인 위협을 초래할 수 있습니다. 그러나, 지능형 교통 시스템에서는 익명성을 위해 일정 시간이 지나면 차량의 식별정보를 변경해 공격자를 찾는데 어려움이 있다. 따라서 본 논문에서는 지능형 교통 시스템 내에서 이상행위를 유발하는 차량을 탐지하기 위해 V2X에 활용되는 표준 메시지 정보를 통해 식별하여 추적하는 기술을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.