• 제목/요약/키워드: 이상점 식별

검색결과 95건 처리시간 0.02초

다중 선형 모형에서 식별된 다중 이상점과 다중 지렛점의 재확인 방법에 대한 연구 (A Confirmation of Identified Multiple Outliers and Leverage Points in Linear Model)

  • 유종영;안기수
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.269-279
    • /
    • 2002
  • 다중 이상점 과 다중 지렛점의 식별은 가장효과(masking effect)와 편승효과(swamping effect)에 영향을 받으므로 어려움이 존재한다. Rousseeuw와 van Zomeren(1990)은 LMS (Least Median of Squares) 회귀방법과 MVE(Minimum Volume Ellipsoid) 통계량을 이용하여 다중 이상점과 다중 지렛점을 식별하였다. 그러나 이들의 방법은 LMS와 MVE의 강한 로버스트성으로 인하여 이상점과 지렛점이 아닌 점들도 이상점과 지렛점으로 식별하는 경향이 있다. Fung(1993)은 식별된 이상점과 지렛점들에 대하여 재확인방법을 제안하였는데 이 방법은 인근효과(adjacent effect)에 영향을 받아 이상점과 지렛점을 식별하는데 문제가 있는 것으로 분석되었다. 본 논문은 이러한 문제점을 지적하고 새로운 방법을 제안하여 식별된 이상점과 지렛점을 재확인하고자 한다.

Hadi와 Simonoff의 다중이상점 식별방법의 개선과 여러 다중이상점 식별방법의 효율성 비교

  • 유종영;김현철
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.11-23
    • /
    • 1996
  • 본 연구에서는 선형회귀분석에서 Hadi와 Simonoff의 다중이상점 식별방법을 수정하여 새로운 알고리즘을 제시하였다. Hadi와 Simonoff의 알고리즘 첫 단계에서 이상점일 가능성이 없는 점들의 집합을 추출할 때 가장효과와 편승효과에 영향을 받을 수 있음으로, 이 첫 단계를 수정하였다. 우리는 잔차가 일정한 분산을 갖는 정규분포에 다르다는 가정하에서 잔차의 신뢰구간을 생각하고, 이 구간안에서 잔차의 MAD가 최소인 새로운 모형을 탐색하고, 이를 이상점일 가능성이 없는 점들의 집합을 추출하는데 일용하는 새로운 알로리즘을 제시하였다. 제시된 방법은 실제자료에서 다른 방법에 비해 효율적으로 이상점을 식별할 수 있었다.

  • PDF

로지스틱회귀모형의 로버스트 추정을 위한 알고리즘 (Algorithm for the Robust Estimation in Logistic Regression)

  • 김부용;강명욱;최미애
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.551-559
    • /
    • 2007
  • 로지스틱회귀에서 일반적으로 사용되는 최대우도추정법은 이상점에 대해 로버스트 하지 않다. 따라서 본 논문에서는 로지스틱회귀모형의 로버스트 추정을 위한 알고리즘을 제안하고자 한다. 이 알고리즘은 V-마스크 형태의 경계기준에 의해 나쁜 지렛점과 수직이상점을 식별하고, 식별 결과를 바탕으로 이상점의 영향력을 감소시키기 위한 효과적인 방안을 모색한다. 이상점의 영향력 감소는 가중치와 조정치를 적절히 선정함으로 가능하며, 그 결과 붕괴점이 높은 추정치를 얻게 된다. 제안된 알고리즘을 다양한 자료에 적용하여 정분류율을 측정하여 비교하였는데, 새로운 알고리즘이 최대우도추정보다 정확한 분류를 해 주는 것으로 평가되었다.

스캔 만화도서 식별 및 특징 검색 시스템 (An Identification and Feature Search System for Scanned Comics)

  • 이상훈;최낙연;이상훈
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제41권4호
    • /
    • pp.199-208
    • /
    • 2014
  • 본 논문에서는 스캔된 만화의 콘텐츠 특성을 고려한 식별 및 특징 검색 시스템을 제안하였다. 스캔 만화의 특징점을 생성하기 위해서 계층적 대칭 핑거프린팅 방법을 활용하였다. 제안하는 핑거프린트 식별 및 검색 시스템은 웹하드와 같은 온라인 서비스 제공자들이 대량의 스캔만화에 대하여 즉각적인 식별 결과를 얻을 수 있도록 설계되었다. 실험에서는 회전, 이동 등의 이미지 변형에 대해서 핑거프린트의 식별 강인성에 대하여 분석하였다. 또한 특징점 데이터베이스에서의 빠른 매칭을 위한 데이터베이스 구조를 제안하였고, 전역 검색 및 최대중요특징 검색과 같은 기존의 다른 검색방법과 성능을 비교하였다.

L1-회귀추정량의 붕괴점 향상을 위한 알고리즘 (Algorithm for the L1-Regression Estimation with High Breakdown Point)

  • 김부용
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.541-550
    • /
    • 2010
  • $L_1$-회귀추정량이 수직이상점에 대해서는 매우 로버스트하지만 지렛점에 대해서는 전혀 로버스트하지 않다는 사실은 잘 알려져 있다. 본 논문에서는 수직이상점은 물론 지렛점에 대해서도 로버스트한 $L_1$-회귀추정을 위한 알고리즘을 제안한다. MCD 또는 MVE-추정량에 바탕을 둔 로버스트거리를 기준으로 지렛점들을 식별하고, 식별된 지렛점들의 영향력을 적절히 감소시키기 위한 가중치를 결정한다. 가중치에 의해 변환된 자료에 선형척도변환 기법에 바탕을 둔 선형계획 알고리즘을 적용함으로써 $L_1$-회귀추정량의 붕괴점을 향상시킨다. 다양한 형태와 규모의 자료에 대한 모의실험 결과, 제안된 알고리즘에 의한 $L_1$-회귀추정량의 붕괴점이 크게 향상되는 것으로 나타났다.

다변량 공정 모니터링에서 이상신호 발생시 원인 식별에 관한 연구 (Notes on identifying source of out-of-control signals in phase II multivariate process monitoring)

  • 이성임
    • 응용통계연구
    • /
    • 제31권1호
    • /
    • pp.1-11
    • /
    • 2018
  • 최근 다변량 공정관리는 다양한 응용 분야에서 중요해지고 있는 추세이다. 예를 들어, 제조 산업 분야에서는 다변량 품질특성치를 동시에 모니터링할 필요가 있다. 그러나, 다변량 관리도는 이상신호가 발생한 경우 그 원인이 되는 개별적인 변수를 식별하기가 어렵기 때문에, 실제로는 기대만큼 유용하게 쓰이고 있지 않은 형편이다. 이에 본 논문에서는 새로운 관측치에 대한 개별적인 신뢰구간을 사용하여 이상신호의 원인을 탐지하는 세 가지 방법을 소개하고, 시뮬레이션 연구를 통해 이상신호의 원인이 되는 개별적인 변수를 식별하고 해석하는 데 있어 주의할 점이 무엇인지 살펴보기로 한다.

기계 학습을 활용한 보안 이상징후 식별 알고리즘 개발 (Development of Security Anomaly Detection Algorithms using Machine Learning)

  • 황보현우;김재경
    • 한국전자거래학회지
    • /
    • 제27권1호
    • /
    • pp.1-13
    • /
    • 2022
  • 인터넷, 모바일 등 네트워크 기술이 발전함에 따라 내외부 침입 및 위협으로부터 조직의 자원을 보호하기 위한 보안의 중요성이 커지고 있다. 따라서 최근에는 다양한 보안 로그 이벤트에 대하여 보안 위협 여부를 사전에 파악하고, 예방하는 이상징후 식별 알고리즘의 개발이 강조되고 있다. 과거 규칙 기반 또는 통계 학습에 기반하여 개발되어 온 보안 이상징후 식별 알고리즘은 점차 기계 학습과 딥러닝에 기반한 모델링으로 진화하고 있다. 본 연구에서는 다양한 기계 학습 분석 방법론을 활용하여 악의적 내부자 위협을 사전에 식별하는 최적 알고리즘으로 LSTM-autoencoder를 변형한 Deep-autoencoder 모형을 제안한다. 본 연구는 비지도 학습에 기반한 이상탐지 알고리즘 개발을 통해 적응형 보안의 가능성을 향상시키고, 지도 학습에 기반한 정탐 레이블링을 통해 기존 알고리즘 대비 오탐율을 감소시켰다는 점에서 학문적 의의를 갖는다.

κ-공간중위 군집방법을 활용한 층화방법 (Stratification Method Using κ-Spatial Medians Clustering)

  • 손순철;전명식
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.677-686
    • /
    • 2009
  • 표본조사에서 널리 쓰이는 모집단의 층화는 추정의 효율을 높이는 방법 중의 하나지만, 이상점을 포함하는 변수가 있는 경우에 여러 가지 문제점을 유발시킬 수 있다. 특히, 이상점이 존재하는 다변량 자료의 경우, 층화를 위한 $\kappa$-평균 군집방법은 이상점에 매우 민감하여 추정의 효율을 떨어뜨릴 수 있다. 본 연구에서는 이상점이 존재하는 다변량 자료의 층화를 위해 $\kappa$-평균 군집방법보다 강건하며 이상점을 따로 식별하는 과정이 배제된 $\kappa$-공간중위수 군집방법을 제안한다. 기존 관련연구인 박진우와 윤석훈 (2008)과 동일한 자료에 대한 사례분석을 통해 층화과정들을 비교, 검토하였으며 이들의 효율성을 추정량의 분산을 통해 비교하였다.

화재발생 이후 분전반 차단기에서의 트래킹현상 진행 가능성에 대한 사례연구 (Case study on the possibility of Tracking at the Circuit Breaker after starting fire)

  • 박영국;이승훈;이상준;박종택;송호림
    • 한국화재조사학회지
    • /
    • 제9권1호
    • /
    • pp.47-53
    • /
    • 2006
  • 본 논문은 화재발생 이후에 화재현장의 조건에 따라 분전반의 주차단기 전원측 단자에서의 트래킹 현상 진행 가능성에 대하여, 화재현장 조사사례를 들어 고찰하였다. 화재현장 조사과정에서 분전반의 주차단기 전원측 단자에서 트래킹 형태가 식별됨에도 불구하고 그 부하측에서 전기적인 특이점이 식별되는 경우에는, 단순히 트래킹 형태가 식별되는 점만으로 발화원인을 판정하는 자세를 지양하고, 구체적인 연소형태를 검토하여 발화개소, 연소확대 경로 등의 해석 및 전체적인 전기계통의 고찰을 통하여, 분전반 주차단기에서의 발화원인 등을 판정해야되며, 또한, 화재현장의 정밀조사 없이 분전반 및 차단기의 조사와 해석만으로는 발화여부 또는 발화원인에 대하여 논단하는 것이 어렵다는 결론을 도출하였다.

  • PDF

V2X 환경에 적합한 차량 식별 및 추적 기술에 관한 연구 (A Study on Vehicle Identification and Tracking Technique in V2X Environments)

  • 이준택;김찬민;서지원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.170-172
    • /
    • 2023
  • 최근 자동차는 자율주행차 혹은 스마트카로 진화하며 다양한 외부 통신 인터페이스를 포함하고 있습니다. 각 기능 통제를 위해 차량 소프트웨어의 복잡성과 자동차 기술 발전에 따라 통신 인터페이스의 증가로 인하여 자동차에 대한 사이버 공격 가능성 및 위험성이 꾸준히 증가하고 있습니다. 특히, 커넥티드카의 안전을 위한 V2X(Vehicle to Everything)통신이 보안 취약점을 가질 경우, 이는 탑승자의 생명에 직접적인 위협을 초래할 수 있습니다. 그러나, 지능형 교통 시스템에서는 익명성을 위해 일정 시간이 지나면 차량의 식별정보를 변경해 공격자를 찾는데 어려움이 있다. 따라서 본 논문에서는 지능형 교통 시스템 내에서 이상행위를 유발하는 차량을 탐지하기 위해 V2X에 활용되는 표준 메시지 정보를 통해 식별하여 추적하는 기술을 제안하고자 한다.