• 제목/요약/키워드: 이상유동 입자영상유속계

검색결과 43건 처리시간 0.017초

오일펜스의 tip 형상이 후류유동에 미치는 영향에 관한 연구 (Effect of tip configuration of an oil fence on wake structure behind the fence)

  • 고민석;이상준;이정묵;정상국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.772-776
    • /
    • 2001
  • The flow structures of turbulent shear layer behind oil fences with different tip configurations were investigated experimentally using flow visualization and PIV velocity field measurement. An oil fence was installed in a circulating water channel and the flow structure around the fence tip was mainly analyzed in this experiment. The four tip configurations tested in this experiment are knife edge; semi-circle edge, circular edge and rectangular edge. The 300 instantaneous velocity fields were measured using the single-frame PIV system and they were ensemble averaged to give the mean velocity field and spatial distribution of turbulent statistics. Free stream velocity was fixed at 10ms/sec and the corresponding Reynolds number based on the fence height was Re=4000. As a result, for the oil fence with rectangular edge, the streamwise velocity component was decreased. On the other hand it was increased for the oil fence with circular edge. For all four fences tested in this study, general flow pattern of the lower shear layer is analogous but the upper layer shows difference depending on the tip configurations. The oil fence with circular edge has more diffusive upper shear layer than that of the others. The shear layer of the oil fence with rectangular edge has relatively thin thickness. The oil fence with circular edge was found to be proper shape for tandem fence.

  • PDF

용융아연 도금공정에서의 SNOUT 내부 유동장 해석 ( I ) (Velocity Field Measurement of Flow Inside SNOUT of Zinc Plating Process ( I ))

  • 신대식;최제호;이상준
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1265-1273
    • /
    • 1999
  • PIV(Particle Image Velocimetry) velocity field measurements inside the snout of a1/10 scale model of the Zn plating process were carried out at the strip speed $V_s=1.5m/s$. Aluminum powder particles ($1{\mu}m$) and atomized olive oil ($3{\mu}m$) were used as seeding particles to simulate the molten Zinc flow and deoxidization gas flow, respectively. A pulsed Nd:Yag laser and a $2K{\times}2K$ high-resolution CCD camera were synchronized for the PIV velocity field measurement. From flow visualization study, it is found that the liquid flow in the Zn pot is dominantly governed by the uprising flow caused by the rotating sink roll, with its effect on the steel strip inside the snout largely diminished by installing of the snout. The deoxidization gas flow in front of the strip inside the snout can be characterized by a large-scale vortex rotating clockwise direction formed by the moving strip. In the rear side of the strip, a counter-clockwise vortex is formed and some of the flow entrained by the moving strip impinges on the free surface of molten zinc. The liquid flow in front of the strip is governed by the flow entering the snout, caused by the spinning sink roll. Just below the free surface a counter-clockwise vortex is formed near the snout wall. The moving strip affects dominantly the flow behind the strip inside the snout, and large amount of the liquid flow follows the moving strip toward the sink roll. The thickness of the flow following the strip is very thin in the front side due to the uprising flow, however thick boundary layer is formed in the rear side of the strip. Its thickness is increased as moving downstream toward the sink roll. Inside the snout, the deoxidization gas flow above the free surface is much faster than the liquid flow in the zinc pot. Due to the larger influx of the flow following the moving strip in the rear side of the strip, higher percentage of imperfection can be anticipated on the rear surface of the strip.

PIV를 이용한 KRISO 3600TEU 컨테이너선모형선의 반류 측정 및 해석 (PIV Measurements of Wake behind a KRISO 3600TEU Container Ship Model)

  • 이상준;고민석;이정묵
    • 대한조선학회논문집
    • /
    • 제39권3호
    • /
    • pp.48-56
    • /
    • 2002
  • KRISO 3600 TEU 컨테이너 모형선의 반류 유동을 PIV 기법을 이용하여 측정하였다. 본 실험은 시험부의 크기가 $1.0^W{\times}1.0^H{\times}4.5^L(m)$인 회류수조에서 수행되었는데, 선박 반류의 종단면과 횡단면에서 속도장을 측정함으로써 반류의 유동특성을 해석하였다. 실험시 횡단면 측정은 반류영역인 Station -0.5767, -1, -3의 3단면에서 수행하였고, 종단면의 경우 배의 중심 평면에서 우현방향으로 Z/(B/2)=0, 0.1, 0.2, 0.4, 0.6의 5단면에서 속도장을 측정하였다. 자유흐름속도는 $U_O=0.6m/s$로 고정하였는데, 수선간 길이 $L_{PP}=1.5m$에 기초한 레이놀즈수는 약 $Re=9{\times}10^5$이다. 각각의 측정 단면에서 순간속도장 400장을 구하고, 이들을 앙상블(ensemble) 평균하여 평균속도장, 난류운동 에너지 및 와도의 공간분포를 구하였다. 반류영역에는 서로 반대방향으로 회전하는 한 쌍의 longitudinal 보오텍스가 존재하며 수선 근처에 반대방향으로 회전하는 2차 와류가 발생하였다. 하류로 나아감에 따라 longitudinal 보오텍스와 2차 와류는 난류확산과 점성소산에 의하여 강도가 약화되지만 반류영역은 점차 확장된다.