• 제목/요약/키워드: 이상유동 입자영상유속계

검색결과 43건 처리시간 0.038초

반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (2) - 유속분포 (2) (Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2))

  • 윤인경;엄인용
    • 대한기계학회논문집B
    • /
    • 제41권2호
    • /
    • pp.97-107
    • /
    • 2017
  • 본 논문은 반 쐐기형 연소실에서 포트형상에 따른 정상유동 특성을 비교한 연구의 두 번째로 유동 평가위치의 영향을 고찰한 것이다. 입자영상유속계로 반 쐐기형 연소실에 직선형 포트와 나선형 포트를 적용하여 측정위치를 헤드 밑면부터 하류로 보어의 1,75배 위치 즉 1.75B부터 6배 위치 즉, 6.00B까지 변경하면서 평면유속을 측정하였다. 속도분포 분석 결과 반 쐐기형 연소실을 채택하면 지붕형과 달리 동일 리프트에서 거시적 유속분포와 유선은 스월 거동 중심은 측정위치가 관계없이 거의 일정하다. 직선형 포트에서는 모든 측정위치에서 편심도는 충격식 스월 측정기에서 측정값 왜곡이 발생하는 범위에 들어오고, 나선형 포트에서도 리프트 4mm 이하에서는 모든 측정위치에서 편심의 영향을 무시할 수 없지만, 측정위치가 3.00B 이상이 되면 리프트 5mm 이상에서 편심도가 급격히 감소한다. ISM가정과의 속도분포 차이에 의해 직선형 포트의 리프트 4mm 이하 스월 중심 평가를 제외하고 모든 PIV 평가방법에서 ISM 평가 대비 상대적인 상쇄효과가 있다. 마지막으로 중심 설정과 축 방향 속도분포 가정은 스월 평가에 정성적 영향을 주지 않고, 구체적인 접선속도 분포형태에 따라 절댓값에만 영향을 준다.

마이크로 복수 분지관에서의 버블거동에 관한 연구 (Bubble Behavior in a Micro-Multi-Branched-Channel)

  • 김경천;류건호
    • 한국가시화정보학회지
    • /
    • 제4권2호
    • /
    • pp.32-36
    • /
    • 2006
  • Recently there are many researches about single flow and two-phase flow phenomena in the mini and microchannel. But from this result the principle in the microchannel was not explained clearly. In this paper two-phase flow pattern was visualized in the micro-multi-branched-channel using a high speed camera. Microchannel was fabricated with PDMS and glass slide. The velocity profile was obtained by a Micro PIV. Then flow boiling at the near inlet area was occurred and vapor was moved in the micro-multi-branched-channel.

  • PDF

미세 생체유동 해석을 위한 첨단 유동가시화기법 (Advanced Flow Visualization Techniques for Diagnosing Microscale Biofluid Flows)

  • 이상준
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.1-8
    • /
    • 2009
  • Recently microscale biofluid flows have been receiving large attention in various research areas. However, most conventional imaging techniques are unsatisfactory due to difficulties encountered in the visualization of microscale biological flows. Recent advances in optics and digital image processing techniques have made it possible to develop several advanced micro-PIV/PTV techniques. They can be used to get quantitative velocity field information of various biofluid flows from visualized images of tracer particles. In this paper, as new advanced micro-PIV techniques suitable for biofluid flow analysis, the basic principle and typical applications of the time-resolved micro-PIV and X-ray micro-PIV methods are explained. As a 3D velocity field measurement technique for measuring microscale flows, holographic micro-PTV method is introduced. These advanced PIV/PTV techniques can be used to reveal the basic physics of various microscale biological flows and will play an important role in visualizing veiled biofluid flow phenomena, for which conventional methods have many difficulties to analyze.

구(球) 주위 난류유동의 정량적 가시화 (Flow Visualization of Turbulent Flow around a Sphere)

  • 장영일;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.50-53
    • /
    • 2005
  • The turbulent flow around a sphere was investigated in a streamwise meridian plane using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5,300 and PIV measurements in a circulating water channel at Re=7,400. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. In addition, the mean flow pattern extracted by particle tracing method in water tunnel at Re= 14,500 reveals two distinct comparable toroidal(not closed) vortices in the recirculation region. The mean velocity field measured using a PIV technique demonstrates the detailed wake configuration of close symmetric recirculation and near-wake configuration with two toroidal vortices, reversed velocity zone and vorticity contours.

  • PDF

고해상도 PIV 기법을 이용한 타원형 제트의 근접 유동장 해석 (Flow Analysis on Near Field of Elliptic Jet Using a Single-Frame PIV)

  • 신대식;이상준
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.459-466
    • /
    • 2000
  • Flow characteristics of turbulent elliptic jets were experimentally investigated using a single-frame PIV system. A sharp-edged elliptic nozzle with aspect ratio(AR) of 2 was tested and the experimental results were compared with those of circular jet having the same equivalent diameter($D_e$). The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter was about $1{\times}10^4$. The spreading rate along the major and minor axis are different remarkably. The jet half width along the major axis decreases at first and then increases with going downstream. But along the minor axis the jet width increases steadily. The elliptic jet of AR=2 has one switching points at $X/D_e=2$ within the near field. Turbulence properties are also found to be significantly different along the major and minor axis planes.

PIV 속도장 측정기법을 이용한 링 후류 유동구조에 대한 실험적 연구 (Investigation on Flow Structure behind Circular and Elliptical Ring by Particle Image Velocimetry)

  • 김승곤;김석;이상준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.312-315
    • /
    • 2008
  • The flow structure behind circular and elliptical type rings embedded in a cross-flow was investigated experimentally using two-frame particle image velocimetry (PIV). The experiments were performed in a circulating water channel with a test section of 0.35m height ${\times}$ 0.3m width ${\times}$ 1.1m length. PIV measurements were carried out with varying the Reynolds number in the range of 4.5 ${\times}$ $10^2$ - 4.5 ${\times}$ $10^3$. In the present study, turbulent flow structures in the stream-wise direction and span-wise direction were investigated. The mean velocity field distribution was obtained by statistical-averaging instantaneous velocity fields. The spatial distributions of turbulent statistics such as turbulent intensities and turbulent kinetic energy were also investigated.

  • PDF

홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Convection Cell 내부 열유동 해석 (Measurement of Thermal Flow in a Hele-Shaw Convection Cell Using Holographic Interferometry and PIV Technique)

  • 김석;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.35-38
    • /
    • 2002
  • Variations of temperature and velocity fields in a Hele-Shaw Convection Cell (HSC) were measured using a holographic interferometry and PIV technique with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. PIV results show that flow inside the HSC is periodic and the oscillating state is well matched with the temperature field results. The holographic interferometry and PIV techniques employed in this study are useful for analyzing the unsteady convective thermal fluid flows.

  • PDF

마이크로 채널내부 미세 협착 부위의 유동특성에 대한 실험적 연구 (Experimental Study on Flow Characteristics in a Micro-stenosis Inside a Microchannel)

  • 지호성;이상준
    • 대한기계학회논문집B
    • /
    • 제30권3호
    • /
    • pp.255-261
    • /
    • 2006
  • Flow characteristics of DI water in a microchannel with a stenosis were investigated using .a micro PIV system with varying flow rate. The width and depth of the PDMS micro-channel were $100{\mu}m\;and\;50{\mu}m$, respectively. To Investigate flow characteristics in the micro-stenosis, the same experiment was carried out in a straight microchannel under the same flow rate. The measured mean velocity fields were almost symmetric with respect to the channel centerline. The experimental results are well agreed with the theoretical Hagen-Poiseuille profile. In the contraction part of the micro-stenosis, the oncoming flow is accelerated rapidly and the maximum velocity occurs at the throat, almost 4.99 time faster than that without the stenosis.

PIV 계측에 의한 고주파수 초음파 유동장 해석에 관한 연구 (A Study on the Flow Field Analysis with a High-frequency Ultrasonic by PIV Measurement)

  • 이상범;송민근;손승우;정광수;주은선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.727-732
    • /
    • 2001
  • The purpose of this study is to compare the time mean velocity distribution, the time mean kinetic energy, and the time mean turbulence intensity between vertical and horizontal flow fields in a coaxial circular pipe by PIV measurement. Experiments are performed at a Reynolds number 2,000, measuring regions divided as the section regions A, B, C, D in flow fields. The angle of the high-frequency ultrasonic is selected in the direction of $45^{\circ}$ to the flow axes and it is reflected several times. In results, it is clarified that the effect of gravity is given in the vertical flow field compared with the horizontal flow field and the ultrasonic affects the turbulence enhancement. And kinetic energy and turbulence intensity with ultrasonic are shown slightly bigger than those in flow field without it.

  • PDF

디지털 홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Cell 내부 열유동 해석 (Diagnosis of HSC Convective Flow Using a Digital Holographic Interferometry and PIV System)

  • 김석;이상준
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.493-499
    • /
    • 2004
  • Variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasi-steady variation of temperature field, two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves were eliminated effectively using a digital image processing technique. The reconstructed images are clear, but transient flow cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.