• Title/Summary/Keyword: 이상영역열처리

Search Result 122, Processing Time 0.034 seconds

열처리에 따른 ITO 박막의 전기적 광학적 특성

  • 이재형;박용관;신재혁;신성호;박광자;이주성
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.72-72
    • /
    • 2000
  • ITO(Indium-Tin-Oxide)는 n-type 전도 특성을 갖는 산화물 반도체로서 가시광 영역에서의 높은 광투과율 및 낮은 전기 비저항을 나타내기 때문에 태양전지, 액정디스플레이(liquid crystal display), 터치스크린(touch screen) 등의 투명전극 재료, 전계 발광(electroluminescent) 소자, 표면발열체, 열반사 재료 등 다양한 분야에 응용되고 있다. 본 연구에서는 타겟 제작에 드는 비용을 줄이고, 타겟 이용의 효율성을 높이기 위해 기존의 세라믹 타겟 대신 분말 타겟을 사용하여 유리 기판 상에 ITO 박막을 DC magnetron sputtering법에 의해 제조하고, 열처리 온도 및 열처리 분위기에 따른 ITO 박막의 전기적 광학적 특성을 조사하였다. 열처리 온도가 10$0^{\circ}C$이하인 경우 열처리하지 않은 시편과 동일하게 In2O3의 (411)면에 해당하는 peak가 관찰되었다. 그러나 20$0^{\circ}C$의 온도로 열처리 할 경우 (411)면 peak의 세기는 상대적으로 감소하고 대신 이전에 나타나지 않았던 (222)면에 대응하는 peak 세기가 현저하게 증가함을 알 수 잇다. 이것은 ITO 박막의 경정성장이 열처리 전 (411)면 방향으로 이루어지나 20$0^{\circ}C$의 온도로 열처리 후 재결정화에 의해 (222)면 방향으로의 우선방위를 갖고 성장함을 의미한다. 또한 주로 높은 기판온도에서 관찰되었던 (211), (400), (411), (440), (622)면 등에 해당하는 peak가 나타남을 볼 수 있었다. 열처리 온도를 더욱 증가시킴에 따라 결정구조에는 큰 변화 없이 (222)면 peak 세기가 증가하였다. 한편 열처리 온도를 더욱 증가시킴에 따라 (222)면 peak 세기가 상대적으로 조금 감소할뿐 XRD회절 결과에는 큰 변화를 관찰할 수 없었다. 이러한 결과로부터 기판을 가열하지 않고 증착한 ITO 박막의 재결정화에 필요한 최소의 열처리 온도는 20$0^{\circ}C$이며, 그 이상의 열처리 온도는 ITO박막의 결정구조에 큰 영향을 미치지 않음을 알 수 있었다. 열처리 전 비저항은 1.1$\times$10-1 $\Omega$-cm 의 값을 가지거나 10$0^{\circ}C$의 온도로 열처리함에 따라 9.8$\times$102$\Omega$-cm 로 약간 감소하였다. 열처리 온도를 20$0^{\circ}C$로 높임에 따라 비저항은 급격히 감소하여 1.7$\times$10-3$\Omega$-cm의 최소값을 나타내었다. 열처리 온도가 10$0^{\circ}C$인 경우 가시광 영역에서의 광투과율은 열처리하지 않은 시편과 비교해 볼 때 약간 증가하였다. 열처리 온도는 20$0^{\circ}C$로 증가시킴에 따라 투과율은 크게 향상되어 흡수단 이상의 파장영역에서 90% 이상의 투과율을 나타내었다. 이러한 광투과율의 향상은 앞서 증착된 ITO 박막이 열처리 중 재결합에 의해 우선 성장 방위가 (411)면 방향에서 (222)면 방향으로 변화되었기 때문으로 생각된다. 그러나 열처리 온도를 20$0^{\circ}C$이상으로 증가시켜도 광투과율은 큰 변화를 나타내지 않았다.

  • PDF

ITZO 박막의 전자적 및 광학적 특성

  • Lee, Seon-Yeong;Denny, Yus Rama;Gang, Hui-Jae;Heo, Seong;Jeong, Jae-Gwan;Lee, Jae-Cheol;Chae, Hong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.324-324
    • /
    • 2012
  • 투명전도체(Transparent Conducting Oxides: TCOs)는 일반적으로 면저항이 $103{\Omega}/sq$ 이하로 전기가 잘 통하며, 가시광선영역인 380~780 nm에서의 투과율이 80% 이상이고, 3.2eV 이상의 밴드갭을 가지는 재료로써, 전기전도도와 가시광선영역에서 투과성이 높아 전기적, 광학적 재료로 관심을 받아 다년간 연구대상이 되어오고 있다. 현재 가장 널리 사용되고 있는 투명전도체(Transparent Conducting Oxides: TCOs) 소재로는 Indium Tin Oxide (ITO)가 가장 각광받고 있지만, Indium의 가격상승과 박막의 열처리를 통해 저항이 증가하는 단점을 가지고 있어 이를 대체 할 새로운 소재 개발이 필요한 상황이다. 그러므로 투명전도체 소재 개발에 있어서 가장 중요한 연구과제는 Indium Tin Oxide(ITO)의 단점을 개선시키고 안정된 고농도의 In-Zn-Sn-O(ITZO) 박막을 성장시키는 것이다. 본 연구에서는 RF스퍼터링법에 의하여 Si wafer에 In-Zn-Sn-O(IZTO)를 $350{\AA}$ 만큼 증착시키고, 1시간 동안 $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$로 각각 열처리 하였다. 박막의 전자적, 광학적 특성은 XPS(X-ray Photoelectron Spectroscopy), REELS(Reflection Electron Energy Loss Spectroscopy)를 이용하여 연구하였다. XPS측정결과, ITZO박막은 In-O, Sn-O and Zn-O의 결합을 가지고 있고, 박막의 열처리를 통해 $400^{\circ}C$에서 Zn2p의 피크가 가장 크게 나타나는 반면 In3d와 Sn3d는 열처리를 했을 때가 Room Temperature에서 보다 피크가 작아지는 것을 확인하였다. 이는 $400^{\circ}C$에서 Zn가 표면에 편석됨을 나타낸다. 그리고 REELS를 이용해 Ep=1500 eV에서의 밴드갭을 얻어보면, 밴드갭은 $3.25{\pm}0.05eV$로 온도에 크게 변화하지 않았다. 또한 QUEELS -Simulation에 의한 광학적 특성 분석 결과, 가시광선영역인 380nm~780nm에서의 투과율이 83%이상으로 투명전자소자로의 응용이 가능하다는 것을 보여주었다.

  • PDF

Plasma CVD 법에 의한 ITO 박막제작

  • 김형근;박연수;곽민기;장경동;손상호;이상윤;이상걸
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.86-86
    • /
    • 1994
  • 박막 EL소자의 투명전극으로 제작된 ITO막의 전기적, 광학적 특성을 조사하였다. Plama CVD방법으로 제작된 ITO막은 증착시 산소결핍으로 인한 비 다량결합(non-stochiometry) 에 의해 In이 석출되어 흑화현상이 일어나 전기전도도와 광투과율을 향상을 위해 산소분위기에서 30$0^{\circ}C$로 4분간 열처리를 행하였다. 한편 ITO막의 비저항 $\rho$와 광투과율 T를 Van der pauw법과 단색 분광계로 각각 측정하였다. 그 결과 상온에서 10-15$\Omega$/$\square$의 면저항과 400-1000nm의 파장영역에서 85-95%의 광투과율을 가져 박막 EL소자의 투명전극 조건을 만족하였다. 열처리에 대학 ITO막의 구조적 특성을 알아보기 위해 X-선회절장치(JEOL.JDX-8030)로 조사하였다. Fig.1은 X-선 회절 패턴을 나타낸다. 열처리후 ITO막은 상대적으로 최대 강도(peak intensity) 가 증가함으로써 열처리에 의해 결정성 향상이되었음을 알수 있다. Fig.2는 파장에 따른 ITO막의 광투과도를 나타낸다.

  • PDF

Electrical and Optical Properties of ITO Films with Sputtering Parameters and Annealing Treatments (증착공정 변수 및 열처리에 따른 ITO박막의 전기적, 광학적 특성)

  • 오태성
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.2 no.2
    • /
    • pp.9-18
    • /
    • 1995
  • LCD의 투명전극으로 사용되는 ITO박막의 반응성 스퍼터링 공정변수 및 열처리에 따른 저기적 특성과 광학적 특성의 변화에 대하여 연구하였다. 90wt% In-10wt% Sn 합금 타겉을 사용한 반응성 스퍼터링으로는 LCD의 투명전극으로 사용하기 위한 100~300$\Omega$/$\square$의 면저항과 가시광선 영역에서 85%이상의 투과도 특성을 모두 만족하는 ITO 박막의 제조가 이루어지지 않았으나 30$0^{\circ}C$의 온도로 Ar 분위기에서 1시간 열처리에 의해 18$\Omega$/$\square$의 낮은 면저항과 가시광선 영역에서의 투과도 95%의 우수한 전기적, 광학적 특성을 갖는 ITO 박막 의 제조가 가능하였다.

Effect of annealing om p-type Al/SnO2 transparent conductive multilayer films (p-형 Al/SnO2 투명 전도성 다층박막에 미치는 열처리의 영향)

  • Park, Geun-Yeong;Kim, Seong-Jae;Gu, Bon-Heun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.27-28
    • /
    • 2014
  • 투명전극이란 전기 전도도를 갖는 동시에 가시광선 영역에서 빛을 투과하는 성질을 가지는 소재이다. 일반적으로 가시광선 영역(380nm~780nm)에서 80%이상의 광 투과도를 가지며, 비저항이 $10^{-3}{\Omega}{\cdot}cm$ 이하, optical band gap 이 3.3 eV 이상인 물질을 TCO(Transparent Conducting oxide)라고 한다. 현재까지 국내의 TCO 관련 연구는 터치패널, 디스플레이, 태양전지 등 광전자분야에서 가장 널리 사용되고 있는 ITO(Sn:In2O3)에 치중되어 있으며, 관련 연구도 거의 디스플레이 맞춤형 연구개발이 주류를 이루어왔다. ITO가 전기전도성이 우수하고 동시에 가시광선 영역에서의 투과율도 80%이상으로 전기적, 광학적 특성이 우수하다는 장점을 가지고 있으나, In의 희소성으로 인한 고가격, 유독성, 접착력 문제 때문에 이를 대체하기 위해 제조원가가 ITO에 비하여 월등히 저렴하고 내화학성과 내마모성이 우수하면서도, 가시광선 영역에서의 광투과율이 80%이상으로 좋다는 $SnO_2$에 관한 연구가 활발히 진행되어 왔다. 적절한 dopant를 첨가하여 $SnO_2$자체의 높은 광학적 투과도를 유지하면서 전기전도성을 더 높일수 있고, 투명전극이 가져야 할 고온 안정성을 가지고 있으며 비독성이고 수소 플라즈마에 대한 내성이 더 클 뿐만 아니라 저온에서 성장이 가능하다. $SnO_2$의 전기 전도도를 높이기 위한 Al, In, Ga, B와 같은 3족 원소가 $SnO_2$의 n형 dopant로 널리 사용되고 있다. 그 중 Al은 반응성이 커서 박막 증착 중에 산화되기 쉬운 반면, 전기적 특성 및 광학적 특성의 향상을 이룰 수 있다. 본 연구에서는 Rf Sputtering법을 사용하여 quartz기판 위에 다층박막 형태의 투명전도막을 제작한 후, 열처리를 수행, 이에 의한 다층박막 내 계면간 상호확산 현상을 이용하여 투명 전도막의 특성변화를 관찰하였다. 박막의 구조적 특성은 XRD장비를 사용하여 분석하였으며, 전기적, 광학적 특성은 각각 표면저항기, 홀 측정 장비, 그리고 UV-VIS-NI를 사용하여 확인하였다.

  • PDF

Improvement of Device Characteristic on Solution-Processed Al-Zn-Sn-O Junctionless Thin-Film-Transistor Using Microwave Annealing

  • Mun, Seong-Wan;Im, Cheol-Min;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.347.2-347.2
    • /
    • 2014
  • 최근, 비정질 산화물 반도체 thin film transistor (TFT)는 수소화된 비정질 실리콘 TFT와 비교하여 높은 이동도와 큰 on/off 전류비, 낮은 구동 전압을 가짐으로써 빠른 속도가 요구되는 차세대 투명 디스플레이의 TFT로 많은 연구가 진행되고 있다. 한편, 기존의 Thin-Film-Transistor 제작 시 우수한 박막을 얻기 위해서는 $500^{\circ}C$ 이상의 높은 열처리 온도가 필수적이며 이는 유리 기판과 플라스틱 기판에 적용하는 것이 적합하지 않고 높은 온도에서 수 시간 동안 열처리를 수행해야 하므로 공정 시간 및 비용이 증가하게 된다는 단점이 있다. 이러한 점을 극복하기 위해 본 연구에서는 간단하고, 낮은 제조비용과 대면적의 박막 증착이 가능한 용액공정을 통하여 박막 트랜지스터를 제작하였으며 thermal 열처리와 microwave 열처리 방식에 따른 전기적 특성을 비교 및 분석하고 각 열처리 방식의 열처리 온도 및 조건을 최적화하였다. P-type bulk silicon 위에 산화막이 100 nm 형성된 기판에 spin coater을 이용하여 Al-Zn-Sn-O 박막을 형성하였다. 그리고, baking 과정으로 $180^{\circ}C$의 온도에서 10분 동안의 열처리를 실시하였다. 연속해서 Photolithography 공정과 BOE (30:1) 습식 식각 과정을 이용해 활성화 영역을 형성하여 소자를 제작하였다. 제작 된 소자는 Junctionless TFT 구조이며, 프로브 탐침을 증착 된 채널층 표면에 직접 접촉시켜 소스와 드레인 역할을 대체하여 동작시킬 수 있어 전기적 특성을 간단하고 간략화 된 공정과정으로 분석할 수 있는 장점이 있다. 열처리 조건으로는 thermal 열처리의 경우, furnace를 이용하여 $500^{\circ}C$에서 30분 동안 N2 가스 분위기에서 열처리를 실시하였고, microwave 열처리는 microwave 장비를 이용하여 각각 400 W, 600 W, 800 W, 1000 W로 15분 동안 실시하였다. 그 결과, furnace를 이용하여 열처리한 소자와 비교하여 microwave를 통해 열처리한 소자에서 subthreshold swing (SS), threshold voltage (Vth), mobility 등이 비슷한 특성을 내는 것을 확인하였다. 따라서, microwave 열처리 공정은 향후 저온 공정을 요구하는 MOSFET 제작 시의 훌륭한 대안으로 사용 될 것으로 기대된다.

  • PDF

RF magnetron sputtering법으로 제작된 IGZO 박막의 Annealing 변화에 따른 특성 연구

  • Jin, Chang-Hyeon;Kim, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.184.1-184.1
    • /
    • 2015
  • RF magnetron sputtering법을 이용하여 IGZO박막을 RF power 100W로 일정하게 유지시켜, 열처리 변화에 따른 구조적, 전기적, 광학적 특성 분석을 연구하였다. IGZO 타겟은 $In_2$ $O_3$, $Ga_2$ $O_3$, ZnO 분말을 각각 1:1:2 mol% 조성비로 혼합하여 소결한 타겟을 사용하였고, $20mm{\times}20mm$ XG glass 기판위에 IGZO박막을 증착하였다. sputtering의 조건은 base pressure $2.0{\times}$10^-6Torr, working pressure $2.0{\times}$10^-2Torr, RF power 100 W, 증착온도는 실온으로 고정, 증착된 박막은 Annealing장비로 $500^{\circ}C$, $700^{\circ}C$, $800^{\circ}C$로 열처리를 하였다. XRD 분석 결과 열처리 $700^{\circ}C$부터 2theta=31.4도에서 peak intensity가 증가하며 결정화가 진행되는 것을 확인하였다. AFM분석 결과 열처리 $700^{\circ}C$에서 최소 0.31 Roughness를 갖는 것을 확인하였고, Hall 측정 결과 열처리 $700^{\circ}C$에서 carrier concentration $4.91{\times}$10^19cm^-3, Mobility 14.4cm^2/V-s, Resistivity $8.7{\times}$10^-5${\Omega}-cm$로 확인하였으며, UV-Visible-NIR을 이용하여 열처리 한 모든 IGZO박막은 가시광선 영역에서 평균 85%이상의 광 투과성을 확인하였다.

  • PDF

Comparative Study of Thermal Annealing and Microwave Annealing in a-InGaZnO Used to Pseudo MOSFET

  • Mun, Seong-Wan;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.241.2-241.2
    • /
    • 2013
  • 최근, 비정질 산화물 반도체 thin film transistor (TFT)는 수소화된 비정질 실리콘 TFT와 비교하여 높은 이동도와 큰 on/off 전류비, 낮은 구동 전압을 가짐으로써 빠른 속도가 요구되는 차세대 투명 디스플레이의 TFT로 많은 연구가 진행되고 있다. 한편, 기존의 MOSFET 제작 시 우수한 박막을 얻기 위해서는 $500^{\circ}C$ 이상의 높은 열처리 온도가 필수적이며 이는 유리 기판과 플라스틱 기판에 적용하는 것이 적합하지 않고 높은 온도에서 수 시간 동안 열처리를 수행해야 하므로 공정 시간 및 비용이 증가하게 된다는 단점이 있다. 따라서, 본 연구에서는 RF sputter를 이용하여 증착된 비정질 InGaZnO pesudo MOSFET 소자를 제작하였으며, thermal 열처리와 microwave 열처리 방식에 따른 전기적 특성을 비교 및 분석하고 각 열처리 방식의 열처리 온도 및 조건을 최적화하였다. P-type bulk silicon 위에 산화막이 100 nm 형성된 기판에 RF 스퍼터링을 이용하여 InGaZnO 분말을 각각 1:1:2mol% 조성비로 혼합하여 소결한 타겟을 사용하여 70 nm 두께의 InGaZnO를 증착하였다. 연속해서 Photolithography 공정과 BOE(30:1) 습식 식각 과정을 이용해 활성화 영역을 형성하여 소자를 제작하였다. 제작 된 소자는 pseudo MOSFET 구조이며, 프로브 탐침을 증착 된 채널층 표면에 직접 접촉시켜 소스와 드레인 역할을 대체하여 동작시킬 수 있어 전기적 특성을 간단하고 간략화된 공정과정으로 분석할 수 있는 장점이 있다. 열처리 조건으로는 thermal 열처리의 경우, furnace를 이용하여 각각 $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$에서 30분 동안 N2 가스 분위기에서 열처리를 실시하였고, microwave 열처리는 microwave를 이용하여 각각 400 W, 600 W, 800 W, 1000 W로 20분 동안 실시하였다. 그 결과, furnace를 이용하여 열처리한 소자와 비교하여 microwave 를 통해 열처리한 소자에서 subthreshold swing (SS), threshold voltage (Vth), mobility 등이 개선되는 것을 확인하였다. 따라서, microwave 열처리 공정은 향후 저온 공정을 요구하는 MOSFET 제작 시의 훌륭한 대안으로 사용 될 것으로 기대된다.

  • PDF

Structural behavior of polyphenylcarbosilane through pyrolysis process

  • Lee, Yun-Ju;Kim, Yeong-Hui;Kim, Jong-Il;Kim, Su-Ryong;Gwon, U-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.94.1-94.1
    • /
    • 2012
  • 폴리페닐카보실란은 페닐그룹을 포함하고 있는 카보실란계 고분자로서 열분해 후 과량의 탄소를 함유할 수 있는 세라믹 전구체이다. 카보실란계열의 고분자는 산화특성이 있어 SiOC 코팅 용도에도 사용되고 있는데, 폴리페닐카보실란은 free 탄소를 함유하는 SiOC:C 필름을 형성할 수 있다. SiOC 코팅 전구체로는 일반적으로 실리카졸, 실라잔 계열의 고분자, 실록산 계열의 고분자가 사용되고 있으나, 폴리페닐카보실란의 경우 상기 전구체에 비하여 보관 안정성 및 뛰어난 부착특성을 나타낸다. 기존 연구에서는 폴리페닐카보실란으로부터 형성된 SiOC:C 필름의 저유전막, 산화방지막, 분진방지막 등의 응용성에 대하여 고찰한 바 있다. 폴리페닐카보실란은 열처리 온도 영역에 따라 응용 분야가 달라질 수 있는데, 이에 본 연구에서는 각 열처리 온도 영역에 따라 형성되는 SiOC:C 필름의 구조적 변화를 고찰하였다. 필름 형성은 20 % 폴리카보실란 용액을 스핀코팅하고 대기상에서 경화를 실시하였으며, 질소 분위기에서 400 ~ 1200 도 범위에서 열처리하였다. 이렇게 얻어진 300 nm 두께의 필름은 XPS 표면분석과 FT-IR, Solid-NMR을 이용하여 C-Si-O 네트워크 형성의 거동을 확인하였으며, 800 도 이상에서 나타나는 특징적인 free 탄소는 Raman을 이용하여 확인하였다.

  • PDF