• Title/Summary/Keyword: 이방적 소재 물성

Search Result 6, Processing Time 0.038 seconds

A Study on the Mechanical behavior of 3D Printed Short-Fiber Reinforced Composite Structures using AM-Structural Coupled Analysis (AM 공정 연계 구조 해석을 활용한 단섬유 강화 복합소재 3D 프린팅 출력물의 기계적 거동 특성 분석)

  • Geung-Hyeon Lee;Da-Young Jang;Chae-Rim Seon;Minho Yoon;Jang-Woo Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.5
    • /
    • pp.309-316
    • /
    • 2024
  • In this paper, additive manufacturing (AM)-structural coupled analysis was proposed to accurately predict the mechanical behavior of 3D printed short-fiber reinforced composite structures. Tensile specimens were printed using a composite 3D printer (Mark Two, Markforged), and tensile tests were conducted on specimens manufactured with various nozzle paths. In addition, a reverse engineering scheme was applied to the experimental data to reasonably derive local anisotropic material properties according to the nozzle paths. Consequently, AM-structural coupled analysis was performed using the enhanced finite element model with mapped local materials properties, and the mechanical behavior of the 3D printed short-fiber reinforced composite was accurately described. To demonstrate the effectiveness of the proposed AM-structural coupled analysis model, the computational results obtained were compared with experimental results.

Prediction of the Mechanical behavior of Short-Fiber Reinforced Composite Structures using Compression Molding-Structural Coupled Analysis (압축 성형-구조 연계 해석을 활용한 단섬유 강화 복합소재 구조물의 기계적 거동 예측)

  • Da-Young Jang;Geung-Hyeon Lee;Jang-Woo Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.5
    • /
    • pp.317-326
    • /
    • 2024
  • In this paper, compression molding-structural coupled analysis was proposed to accurately consider the effect of initial compression molding conditions on the mechanical behavior of short-fiber reinforced composite structures. To this end, local short-fiber orientations depending on the initial charge conditions were investigated using compression molding analysis, and a mean-field homogenization scheme was employed to efficiently derive equivalent orthotropic material properties determined by short-fiber orientations. Furthermore, based on the refined finite element model with short-fiber orientation, compression molding-structural coupled analysis precisely described the locally independent mechanical behavior induced by initial molding conditions. Consequently, it could be confirmed that the proposed analysis model provides a reasonable solution in the design process of short-fiber reinforced composite structures manufactured by compression molding.

Acquisition and Verification of Dynamic Compression Properties for SHPB of Woven Type CFRP (Woven Type CFRP의 SHPB에 대한 동적 압축 물성 획득 및 검증)

  • Park, Ki-hwan;Kim, Yeon-bok;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.363-372
    • /
    • 2020
  • Dynamic compressive material properties at high strain rates is essential for improving the reliability of finite element analysis in dynamic environments, such as high-speed collisions and high-speed forming. In general, the dynamic compressive material properties for high strain rates can be obtained through SHPB equipment. In this study, SHPB equipment was used to acquire the dynamic compressive material properties to cope with the collision analysis of Woven tpye CFRP material, which is being recently applied to unmanned aerial vehicles. It is also used as a pulse shaper to secure a constant strain rate for materials with elastic-brittle properties and to improve the reliability of experimental data. In the case of CFRP material, since the anisotropic material has different mechanical properties for each direction, experiments were carried out by fabricating thickness and in-plane specimens. As a result of the SHPB test, in-plane specimens had difficulty in securing data reproducibility and reliability due to fracture of the specimens before reaching a constant strain rate region, whereas in the thickness specimens, the stress consistency of the specimens was excellent. The data reliability is high and a constant strain rate range can be obtained. Through finite element analysis using LS-dyna, it was confirmed that the data measured from the pressure rod were excessively predicted by the deformation of the specimen and the pressure rod.

A study on structure analysis system for short fiber reinforced plastics (단섬유강화 플라스틱 복합재료 구조해석 기법연구)

  • Youn, Jee-Young;Kim, Sang-Woo;Park, Bong-Hyun;Lee, Seong-Hoon;Kwon, Tai-Hun;Kim, Ki-Tae
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • This paper deals with anisotropic property and structural analysis for short fiber reinforced plastic composites manufactured by the injection molding process. The common approach for modeling this type of material is the consideration of the material as homogenous and isotropic. However, the common isotropy approach often results in unexpected failure. To overcome this, new structure analysis methodology was developed in order to consider fiber orientation effect using injection mold flow analysis and Halpin-Tsai equations for unidirectional composites and taking an orientation average. The numerical predictions are compared to experimental data for tensile specimen. The predicted mechanical properties agree well with experimental data for fiber orientation and weld line effect. The analysis system was also applied to an automobile part. The proposed anisotropic model predicted different mechanical properties by position of the part and different mechanical performance of the part was changed according to injection gate position.

Resonance Frequency Analysis of A Baseball Bat by Impact Angle (가진 각도에 따른 야구배트의 공진주파수 분석)

  • Park, Sun-Hyang;Chung, Woo-Yang;Jung, Hwan-Hee;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.777-783
    • /
    • 2015
  • Wood is an anisotropic material that shows the changes in hardness, quality and dimensions depending on the types of cells on three cross sections, size, array and so on. It can also be used in different ways according to its use, which requires a meticulous research, in order to maximize the utilization by understanding the nature and use; and by clarifying the theory and technologies. The research on relationship among wood's physical properties, density, and elasticity of modulus have been studied in Korea and abroad, but those studies were based on correlation gained through standardized specimen. Rather, the study on complete product is rare. Moreover, the previous reports are mostly concentrating on vibration mode and batting, though the wood's physical properties as a material have not been in the main focus. Therefore, this study will carried out for analyzing MOE through figuring material property out and comparing frequency adapting to the Canadian HardMaple bat. For comparison of material properties, we studied the annual ring and density of the bat; calculated the MOE with resonance frequency and formula (ASTM C1259); and verified the repulsive force of this material. As a result, the relevance of the resonance frequency and annual ring is weak, and in comparison in the grain direction in wood, the MOE value is higher when the grain direction in wood is excited horizontally than when is excited vertically, because the material is repulsive when grain direction is horizontal.

Structural and Electrical Transport Properties of CuCr1-xNixO2 by Pulsed Laser Deposition

  • Kim, Se-Yun;Seong, Sang-Yun;Chu, Man;Jo, Gwang-Min;Hong, Hyo-Gi;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.210-210
    • /
    • 2010
  • ABO2 형태를 가진 delafossite 구조 산화물은 p-type 투명전도체 소재로 유명하다. Delafossite 구조가 p-type 투명전도체에 적합한 결정적인 이유는 밴드갭이 넓고 공유결합에 유리하기 때문이다. 투명전도체는 가시광선의 흡수가 없도록 band gap을 넓히는 것이 우선인데 이러한 band gap이 넓은 구조가 delafossite이다. 또한 delafossite 구조는 구조적으로 각각의 산화물 이온들이 유사 사면체 배위(pseudo-tetrahedral coordination)을 갖는다. 이러한 사면체 배위결합구조에서 산소이온은 비결합면이 없기 때문에 더욱더 공유결합성을 향상시킬 것으로 생각된다. 여기서 A는 +1가 cation, B은 +3가 cation으로 구성되어 있다. A자리에는 1가 원소인 팔라듐, 플래티늄, 은, 구리 등을 가질 수 있고. B자리에 3가 원소이면서도 크기가 알루미늄보다는 크고 란타늄보다는 작은 금속이 들어갈 수 있다. Delafossite 구조는 상온에서 2종류의 polytype (상온에서 Rhombohedaral 구조와 hexagonal 구조)이 존재하며 이들은 각각 3R(Rm) 및2H (P63/mmc)의 결정 구조를 가지고 있다. CuCrO2는 일반적으로 3R결정구조를 가지는 것으로 알려져 있다. delafossite 구조는 전기적 이방성을 띄고 있는데 c-축 방향으로의 전기적 특성이 a-축 방향으로의 전기적 특성보다 약 1000배 높은 물성을 띈다고 한다. 이는 c-축 방향의 원자 위치 때문인데 CuCrO2의 경우 Cu-O-Cr-O-Cu로서 3d-2p-3d-2p-3d 궤도를 가지기 때문인 것으로 알려져 있다.[ref] 반면 c-축으로 에피성장된 박막의 경우 +3가 이온이 위치한 layer에서 hole hopping에 의해 캐리어가 전도된다고 알려져 있기도 하다. 본 연구에서는 PLD를 이용하여 c-plane 사파이어 기판위에 성장된 delafossite구조인 CuCrO2박막의 특성을 알아보았다. p-type 특성을 위하여 CuCrO2에 Ni를 첨가하였으며 그에 따른 구조적 전기적 특성을 조사하였다. 성장온도와 도핑농도를 변화시켜 특성을 연구하였다. 결정구조적 특성과 전기적 특성을 분석하려 한다.

  • PDF