본 논문에서는 단일 이미지의 관심 영역에 기반한 저심도 후처리 방법을 제안한다. 저심도 이미지란 사진에서 초점이 선명하게 포착되는 깊이의 범위가 좁은 이미지를 말한다. 기존의 광학적 특성을 이용한 저심도 이미지를 만드는 과정은 물리적인 구조 설계비용 문제가 존재한다. 또한, 이미지의 후처리 보정을 통한 방법은 이미지상의 사물 깊이 정보를 알기 어렵기 때문에 이미지의 심도를 후처리하기 어려웠다. 이에 따라 본 논문에서는 슈퍼 픽셀 군집화 방법을 통해 관심 영역을 찾고, 이에 기반하여 관심 영역이 부각될 수 있는 저심도 후처리 방법을 제안한다. 제안하는 후처리 방법은 슈퍼픽셀 군집화 방법을 통해 관심영역을 설정하여 배경 영역을 분리하고 블러 과정을 수행한다. 관심 영역을 제외한 부분을 확장 한 뒤 배경 블러를 거치기 때문에 후광효과가 현저히 줄어든 저심도 효과가 적용된 이미지를 얻을 수 있었고 MSRA-1000 데이터 셋 이미지에서 우수한 주관적 화질 결과를 보였다.
컴퓨터 이미지처리는 여러 분야에서 응용되고 있는데 어떤 특성을 만족하는 객체들의 계수를 자동으로 분류시키는 생물학분야, 편지봉투나 일반양식에 인쇄되어 있는 글자를 자동으로 검출하고 인식하며 초음파검사 혹은 X-Ray 촬영에서 이미지를 획득하여 향상시키는 의료분야, 지문 및 얼굴인식 등에 이용되고 있다. 최근 몇 년 동안 이미지인식, 형태론, 이미지데이터 압축에 관한 연구가 진전되면서 본 연구에서 형태론적인 기법을 사용하여 문자인식을 위한 전처리 혹은 후처리 단계에서 사용되는 이미지향상을 위해서 팽창, 침식, 골격화의 3단계를 적용하고 기존의 연구 방법과 비교하여 이미지획득 시간을 줄이고 이미지를 향상시켰다.
본 논문은 CMOS 센서의 ISP 전처리 과정 후 최종 화면에 출력하기 위한 효과적인 이미지 스케일 블록을 저전력, 저비용에 맞은 독립된 하드웨어 장치로 설계 하고자 한다. 카메라 센서 이미지 결과를 디스플레이 장치(OSD(On Screen Display)에 맞는 화면의 크기는 CIF(352${\times}$288), QCIF(176${\times}$144) 출력 모드를 사용한다. 최근 DMB 휴대용 멀티미디어 데이터 전송 사이즈 포맷에서도 위와 같은 사이즈를 지원하고 있다. 일반적인 스케일 처리에서는 PC 그래픽 카드(Graphic Card)장치의 지원을 받아서 처리하는 경우가 많다. 또는 CPU의 연산을 통한 CPU 자원을 점유하여 이미지 스케일을 처리하였다. 휴대용 CMOS 센서용에 적합한 독립적으로 처리할 수 있는 이미지 스케일 기능을 하드웨어로 설계하여 효과적인 시스템 운용과 고속 이미지 스케일 처리가 가능한 하드웨어를 설계하는게 목적이다. 이를 구현 하기위해 기존 알고리즘과 제안한 알고리즘을 비교하여 최적화된 알고리즘 적용하여 VHDL설계언어를 이용한 하드웨어 설계 후, ModelSim 6.0a를 이용하여 데이터를 검증한다.
컴퓨터 이미지처리는 여러 분야에서 응용되고 있는데 어떤 특성을 만족하는 객체들의 계수를 자동으로 분류시키는 생물학분야, 편지봉투나 일반양식에 인쇄되어 있는 글자를 자동으로 검출하고 인식하며 초음파검사 혹은 X-Ray 촬영에서 이미지를 획득하여 향상시키는 의료분야, 지문 및 얼굴인식 등에 이용되고 있다. 최근 몇 년 동안 이미지인식, 형태론, 이미지데이터 압축에 관한 연구가 진전되면서 본 연구에서 형태론적인 기법을 사용하여 문자인식을 위한 전처리 혹은 후처리 단계에서 사용되는 이미지향상을 위해서 침식, 골격화의 2단계를 적용하여 기종의 연구 방법과 비교하여 이미지획득 시간을 줄이고 이미지를 향상시켜 문자를 인식하는 알고리즘을 제안한다.
대부분의 홍채인식 시스템의 전반부를 살펴보면 카메라를 통한 이미지를 획득 후 전처리 과정에서 동공의 경계를 잡는 과정이 수행된다. 카메라를 통한 이미지 획득 시 초점이 좋은 이미지와 나쁜 이미지가 같이 획득이 된다. 초점이 나쁜 이미지는 동공의 경계를 잡는 과정에 있어서 좋은 이미지보다 시간이 오래 걸리기 마련이다. 이에 본 논문에서는 영상획득 후 동공의 경계를 잡는 과정 전에 DCT(Discrete Cosine Transform)를 이용한 선명도 측정하는 방법을 제안한다. 카메라를 통한 영상을 획득한 후 초점이 좋은 영상과 나쁜 영상을 구분하게 되고 초점이 좋은 영상만을 선택하여 다음 과정인 동공의 경계를 잡는 작업을 수행하게 된다. 제안하는 방법은 DCT를 이용한 이미지의 선별 작업에 시간이 소비 되지만 나쁜 영상을 이용하여 동공의 경계를 잡느라 걸리는 시간을 줄일 수 있는 장점을 기대할 수 있다. 우선적으로 수학적 분석을 통하여 23%의 속도 절감을 통한 성능 개선의 가능성을 보였고, 실제 구현을 통하여 속도 향상이 기대된다.
GAN은 이미지 생성모델로서 이미지 공간에서 좋은 결과를 보여왔다. 우리는 이러한 GAN의 능력을 더욱 향상하기 위하여 본 연구에서 주파수 영역에서 이미지를 학습하고 생성하는 새로운 방법을 제안한다. 이를 위하여 먼저 학습데이터를 2D FFT로 주파수 영역으로 변환한 후 변환된 학습데이터를 GAN이 학습하게 한다. 학습 후에 GAN은 새로운 이미지를 생성하며 생성된 이미지를 2D IFFT하여 이미지 공간으로 변환한다. 이렇게 주파수 영역에서 이미지를 생성하는 방법은 이미지 공간에서 생성하는 방법보다 다양한 장점이 있다. 생성된 이미지의 품질을 평가하기 위하여 4개 데이터 셋에 4개의 평가지표를 사용하여 평가한 결과 주파수 영역에서 생성한 이미지가 IS, P&R, D&C 측면에서 더 좋은 것으로 평가되었다.
최근 네트워크 및 카메라 모듈의 발전으로 인해 생성되는 이미지 데이터의 양이 대용량화 되고 있으며, 이미지 데이터를 이용한 이미지 검색 서비스가 제공되고 있다. 이미지 검색 서비스를 제공하기 위해 이미지 데이터베이스 구축이 요구된다. 효율적인 데이터베이스 구축을 위해 Bow 기법을 이용하여 데이터의 차수를 낮춘 후 이미지 벡터를 저장하는 방식을 사용한다. 그러나 이미지 데이터의 수가 급격히 증가하여 오랜 수행 시간을 요구한다. 본 논문에서 인-메모리 기반 분산 프레임워크인 스파크를 이용한 이미지 벡터 생성 과정을 분산 설계하였다. 실험을 통해 제안하는 분산 처리 기법이 기존방법에 비해 효율적임을 보인다.
비디오 데이터의 지능적인 처리를 위해서는 사전에 작성한 메타데이터에 제한 받지 않는 유연한 접근방법이 필요하다. 본 논문에서는 엔트로피를 이용하여 적절한 특징을 추출한 후 비디오를 처리하는 방법을 소개한다. 이미지 인식이 잘 될 경우 일정한 이미지 조합으로 비디오의 배경을 설명할 수 있지만, 이미지 인식이 어렵기 때문에 동일한 배경일지라도 등장 인물의 움직임, 촬영 각도의 변화 등 사소한 변화가 발생하면 컴퓨터는 다른 이미지인 것으로 간주하게 된다. 우리가 제안하는 방법은 비디오를 구성하는 이미지 프레임에서 추출한 SIFT(Scale Invariant Feature Transform) 특성의 분포를 엔트로피에 기반하여 재구성한 후 분포 변화를 통해 장소 변화를 추정하는 방법이다. 제안 방법은 비디오 데이터의 이미지를 특징 짓는 비주얼 워드의 분포를 활용하기 때문에 사소한 변화 정도의 영향을 받지 않으면서 동시에 배경의 확연한 변화를 나타낼 수 있다. 우리는 실제 TV 드라마 데이터에 적용하여 제안 방법의 유용성을 확인하였다.
디지털 이미지의 양이 증가함에 따라 원하는 이미지를 정확하고 빠르게 찾을 수 있는 방법의 필요성이 증가하고 있다. 이미지 검색 방법으로는 이미지의 색상이나 명암과 같은 시각적 특성을 검색 조건으로 이용하는 내용 기반 검색과 이미지를 설명하는 키워드를 검색 조건으로 이용하는 키워드 기반 검색이 있다. 하지만 이러한 방법만으로는 사용자가 원하는 이미지를 정확하게 찾기 힘들다는 문제점이 제기되어 왔다. 따라서 최근에는 검색 도중 사용자의 응답을 받아 사용자의 요구를 파악함으로써 향상된 검색 결과를 제공하는 적합성 피드백에 대한 연구가 많이 진행되고 있다. 하지만 적합성 피드백을 이용하는 방법들도 원하는 결과를 얻기 위해서는 여러 번의 피드백을 필요로 하고 질의 수행이 완료된 후에는 얻어진 피드백 정보를 재사용하지 못한다는 단점이 있다. 따라서 본 논문에서는 이미지에 키워드를 연결한 후 사용자의 피드백 정보를 반영하여 키워드의 신뢰도를 조절함으로써 키워드 기반 이미지 검색의 정확도를 높일 수 있는 모델을 제안한다. 제안된 모델에서는 사용자로부터 피드백을 받은 이미지뿐만 아니라 긍정적 피드백을 받은 이미지들이 공통적으로 가지는 시각적 특성과 유사한 시각적 특성을 가지는 다른 이미지들까지도 키워드의 신뢰도를 조정함으로써 좀 더 빠른 시간 내에 검색 결과의 정확도를 높이도록 한다.
최근 무선인터넷 기술은 급속히 발전하고 있으며 새로운 모바일 미디어를 통하여 일상생활에 직간접적으로 많은 영향을 끼치고 있다. 본 연구에서는 모바일 폰에 의한 촬영으로 이미지의 픽셀(Pixel) 정보를 얻어내고 DB에 저장된 레퍼런스(Reference)이미지와 비교하여 근접 값을 검색하는 알고리즘을 제안한다. 이것은 눈앞에 보이는 사물에 대한 정보에 대하여 소지하고 있는 모바일 폰으로 이미지를 촬영한 후 인터넷 검색을 통해 알 수 있는 가능성을 제시한다. 실제 촬영 이미지에서 한글 문자를 검색한 후 인터넷을 이용해 그에 대한 정보를 검색하는 시스템을 구현 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.