• 제목/요약/키워드: 이미지 향상

검색결과 1,784건 처리시간 0.029초

BL-ASM에서 U-net 기반 위상 홀로그램의 스펙클 노이즈 감소와 이미지 품질 향상 (Speckle Noise Reduction and Image Quality Improvement in U-net-based Phase Holograms in BL-ASM)

  • 남오승;권기철;정종래;이권연;김남
    • 한국광학회지
    • /
    • 제34권5호
    • /
    • pp.192-201
    • /
    • 2023
  • Band-limited angular spectrum method (BL-ASM)는 공간주파수 제어의 문제로 aliasing 오류가 발생한다. 본 논문에서는 위상 홀로그램에 대한 표본화 간격 조정 기법과 딥 러닝 기반의 U-net 모델을 사용한 스펙클 노이즈 감소 및 이미지 품질 향상 기법을 제안하였다. 제안한 기법에서는 넓은 전파 범위에서 aliasing 오류를 제거할 수 있도록 먼저 샘플링 팩터를 계산하여 표본화 간격 조절에 의한 공간주파수를 제어함으로써 스펙클 노이즈를 감소시킨다. 그 후 딥 러닝 모델을 적용한 위상 홀로그램을 학습시켜 복원 이미지의 품질을 향상시킨다. 다양한 샘플 이미지에 대한 S/W 시뮬레이션에서 기존의 BL-ASM과의 peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM)을 비교할 때 각각 평균 5%, 0.14% 정도 비율이 향상됨을 확인하였다.

휘도 변화량 정보를 이용한 HDR 이미지 분할 기법을 통한 지역별 톤 매핑 기법 (Region-wise Tone Mapping Operator for Decomposed High Dynamic Range Image using Luminance Gradient Information)

  • 위승우;박대준;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.211-214
    • /
    • 2016
  • 본 논문에서는 하나의 넓은 동적 영역(High Dynamic Range: HDR)을 갖는 이미지를 Earth Mover's Distance(EMD)값을 이용한 이미지 분할 기법을 적용한 유사 지역 그룹화를 통해, 각 그룹별로 톤 매핑을 수행하는 기법을 제안하고자 한다. 기존의 EMD 값을 통한 이미지 분할 알고리듬은 이미지 내의 같은 그룹으로 분류된 지역에서 휘도(luminance)의 변화가 클 때 후광 현상(halo artifact)이 발생하는 문제점을 보였다. 본 논문에서는 기존의 알고리듬으로 분할된 이미지를 처리할 때 휘도 변화량(gradient)의 정보를 활용하여 후광 현상 제거함으로써 주관적 화질을 향상시켰다.

  • PDF

내용 기반 이미지 검색을 위한 복합 질의문 계획 생성 기법 (Generating Combined Query Plan for Content-Based Image Retrieval)

  • 박미화;엄기현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제27권4호
    • /
    • pp.562-571
    • /
    • 2000
  • 이미지 데이터는 텍스트 데이터와는 달리 다양한 색상과 모양, 질감과 같은 비정형적인 특징을 가진다. 따라서 이미지 데이터베이스는 텍스트 기반의 전통 데이터베이스와는 다른 모델링 방법과 질의, 검색 방법을 사용한. 특히, 내용 기반 이미지 검색에서의 검색 속도와 정확도를 향상시키기 위해서는 새로운 복합 질의문 계획 생성 기법이 필요하다. 본 논문에서는 이를 위해 먼저, 단일 조건을 갖는 시각 질의에 대한 처리 기법들을 토대로 여러 조건을 갖는 복합 질의를 처리하기 위한 복합 질의문 계획 생성기법인 SSCC(Similarity Search for Conjunction Combination Query) 알고리즘을 제안한다. SSCC는 이미지 데이터베이스 검색 시스템에서 복합 질의를 처리하기 위한 질의 최적화 과정에서 질의 수행 시간과 투플 I/O를 최소화하는 질의문 계획을 생성하기 위해 사용된다. SSCC 알고리즘은 복합질의를 단일 질의들로 준해하고 퍼지 집합 이론을 도입하여 단일 질의의 결과들을 통합한다. 논문에서 연구된 내용 기반 복합 질의문 계획 생성 기법은 특정 이미지 영역에 국한되지 않으며 다양한 종류의 시각 질의를 수행하기 위한 효율적인 질의문 계획 생성 기법으로 사용될 수 있다.

  • PDF

3차원 블록 메타포어를 이용한 의료 영상의 질의 결과 시각화 방안 (Visualization Scheme for Query Result of Medical Image Using 3D Block Metaphor)

  • 최용화;엄기현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.73-76
    • /
    • 2000
  • 본 논문은 의료 영상 검색 시스템에서 뇌 MRI 이미지 데이터베이스에서 사용자의 질의를 만족하는 질의 결과 집합에 대한 시각화 방안을 제안한다. 한 환자의 뇌 MRI 이미지를 검색 결과로 제시할 경우 종류별, 방향별로 다양하고 여러 환자의 경우에는 그 양이 더욱 방대해진다. 이러한 뇌 MRI 이미지를 공간 제약적인 화면에 표현하는데는 한계가 있다. 따라서 본 논문에서는 질의 결과를 제시할 대 유사도가 높은 순서로 나열하고, 사용자 요구에 따른 관련 이미지를 종류와 방향별로 제시하여 이미지 조작을 가능하게 한다. 도한, 제시된 뇌 MRI 이미지를 효율적으로 브라우징할 수 있도록 3차원 블록 메타포어를 이용한 시각화 인터페이스를 통하여 공간 활용도의 향상과 사용자 인터페이스의 편의성 및 인지도를 증진한다.

  • PDF

멀티인덱스키를 이용한 내용기반 이미지 검색시스템 (Content-based Image Retrieval System using Multi-index key)

  • 김진천;김주연
    • 한국정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.102-107
    • /
    • 2004
  • 본 논문에서는 시각적. 공간적 정보로 구성된 이미지의 효율적인 검색을 위하여, 색상특징정보와 모양특징정보를 멀티인덱스키로 구성하고 질의 이미지의 입력 시 자동으로 색상특징정보와 모양특징정보를 동시에 추출하여 유사한 이미지를 검색할 수 있는 내용기반 이미지 검색시스템을 제안하였다. 제안된 시스템은 기존의 단일 특징정보를 이용한 방법이나 2가지 이상의 특징정보를 단계적으로 검색하는 방법에 비해 향상된 효율성과 신속성을 보이고 있다.

블락 외곽선의 기울기를 이용한 프랙탈 이미지 압축 (Fast Fractal Image Compression Using the outer fence acceleration)

  • 박인영;위영철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.454-456
    • /
    • 2002
  • 압축 방법에는 크게 손실(lossy)압축과 무손실(lossless)압축으로 나눌 수 있다. 그 중 프랙탈 이미지 압축은 lossy 압축의 한가지 방법으로서 개별적인 화소들에 대한 자료를 저장하기보다는, 영상 생성을 위한 명령이나 방식을 저장하는 방법이다. 특히 이미지의 내에 자기유사성(self-similarity)과 중복성(Redundancy)을 이용하여 관련성을 발견하고 수학적인 공식으로 표현하려는 방식이다. 그러나 이미지를 Domain과 Range로 블록화 한 후 유사한 이미지를 찾아내는 데 걸리는 시간이 상당히 길다. 여기에서는 Domain과 Range의 외곽선의 기울기의 부호를 이용하여 블록을 16가지로 클래스화 하여서, 전체의 Domain 블록을 탐색하는 데 걸리는 시간을 줄이고자 하였다. 전체 탐색을 하는 경우보다 10배 이상의 속도향상을 보였고, 이미지에 따라서는 PSNR 값의 손실도 없음을 보였다.

  • PDF

사분트리 분할 인덱스를 이용한 컬러이미지 검색 (Color Image Retrieval using Quad-tree Segmentation Index)

  • 오석영;홍성용;나연묵
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.175-177
    • /
    • 2004
  • 최근, 이미지 검색기법에서는 객체추출 방법이나 관심영역 추출방법에 관한 연구가 활발히 이루어지고 있다. 그러나, 컬러 이미지의 경우 색상을 고려한 관심영역 특징추출 방법이나 인덱스 기법은 많이 연구되지 못하고 있다. 따라서, 본 논문에서는 컬러 이미지의 색상을 기반으로 하는 사분트리 분할 인덱스 기법을 제안한다. 사분트리 분할 인덱스 구조는 컬러 이미지의 공간 영역을 계층적인 영역으로 분할하여 각 공간 영역의 평균 색상 갓을 데이터베이스에 저장한다 저장되어진 각 영역의 평균 색상은 검색의 효율성을 높이기 위해 사분트리 인스턴스(Quad-tree distance)를 퍼지 값으로 계산하여 인덱스를 생성한다. 생성된 사분트리 분할 인덱스는 컬러 이미지의 관심영역(Region of Interest)의 색상을 검색할 때 유용하게 사용되며. 검색속도의 향상에 도움을 준다.

  • PDF

지역 에지 보존 필터와 변화도 스케일을 이용한 HDR 이미지 톤 매핑 기법 (High Dynamic Range Image Tone Mapping Method using Local Edge Preserving Filter and Gradient Scale)

  • 엄태영;위승우;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.124-127
    • /
    • 2018
  • 넓은 동적 영역 (High Dynamic Range: HDR) 이미지는 주관적 화질 측면에서 우수하지만 대부분의 디스플레이는 좁은 동적 영역 (Low Dynamic Rang e: LDR) 만 지원이 가능하다. 본 논문에서는 이를 해결하기 위해서 톤 매핑 기법 (Tone Mapping Operator: TMO) 을 사용하여 넓은 동적 영역을 압축하여 수행한다. 기존의 지역 에지 보존 (Local Edge Preserving: LEP) 필터를 적용한 이미지결과는 에지를 보존하지만, 스케일의 분해 과정 중 디테일의 손실이 발생되었다. 본 논문에서는 이미지 변화도를 기반으로 디테일을 보존하는 알고리듬을 제안한다. LEP 필터가 적용되기 전에 이미지의 변화도와 동적 영역이 압축된 후의 이미지에 대한 변화도의 차이만큼 가중하여 디테일을 보존함으로써 주관적 화질을 향상시켰다.

  • PDF

이미지 초해상화를 이용한 얼굴 인식 (Face Recognition using Image Super-Resolution)

  • 박준영;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.85-87
    • /
    • 2022
  • 최근 CCTV 출입 기록, 휴대폰 보안, 스마트 매장 등에서 얼굴 인식을 통해 개인을 식별하는 기술이 널리 사용되고 있다. 카메라의 각도, 조명, 사람의 움직임 등 얼굴 인식에 많은 외부 환경이 영향을 미치고 있지만 그중에서도 실제 영상에서 얼굴이 차지하는 영역이 작아 저해상도 얼굴 인식에 어려움을 겪고 있다. 이러한 문제점을 해결하고자 본 논문에서는 이미지 해상도가 얼굴 인식에 끼치는 영향을 알아보고 이미지 초해상화를 통해 얼굴 인식 성능을 개선하고자 한다. 쌍선형, 양3차 회선 보간법과 딥러닝 기반의 이미지 초해상화 모델인 RCAN을 이용하여 업스케일링한 데이터셋에 대해 학습한 ArcFace를 통해 얼굴 검증 평가를 진행하였다. 고해상도 이미지는 얼굴 인식 성능을 향상시키며, RCAN을 사용한 이미지 초해상화가 보간법을 사용한 방법보다 더 좋은 성능을 보였다.

  • PDF

GAN 기반 이미지 합성을 통한 3차원 증강 자세 추정 (3D Augmented pose estimation through GAN based image synthesis)

  • 박찬;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.667-669
    • /
    • 2022
  • 2차원 이미지를 통한 자세 추정의 경우 관절이 겹치거나 가려져 있는 등의 인식 저해 요소로 인하여 자세 추정 정확도가 감소하는 한계가 있다. 본 논문에서는 GAN을 통해 2차원 이미지를 3차원으로 증강한 뒤 자세를 추정하는 기법을 제안한다. 제안하는 방법은 2차원 이미지의 평면좌표 값에서 GAN을 통해 노이즈 벡터 z축 값과 피사체에 투영되는 빛의 방향 값을 반영한 3차원 이미지를 만든다. 이러한 이미지 합성 과정을 거친 후 DeepLabCut을 사용해 관절 좌표를 추출하고 자세 추정 및 분류를 진행한다. 이를 통해 2차원에서의 자세 추정 정확도 향상을 기대할 수 있으며, 향후 이를 기반한 이상행동 탐지 분야에서 적용할 수 있다.