• Title/Summary/Keyword: 이미지 탐지

Search Result 448, Processing Time 0.029 seconds

Multimodal Image Fusion with Human Pose for Illumination-Robust Detection of Human Abnormal Behaviors (조명을 위한 인간 자세와 다중 모드 이미지 융합 - 인간의 이상 행동에 대한 강력한 탐지)

  • Cuong H. Tran;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.637-640
    • /
    • 2023
  • This paper presents multimodal image fusion with human pose for detecting abnormal human behaviors in low illumination conditions. Detecting human behaviors in low illumination conditions is challenging due to its limited visibility of the objects of interest in the scene. Multimodal image fusion simultaneously combines visual information in the visible spectrum and thermal radiation information in the long-wave infrared spectrum. We propose an abnormal event detection scheme based on the multimodal fused image and the human poses using the keypoints to characterize the action of the human body. Our method assumes that human behaviors are well correlated to body keypoints such as shoulders, elbows, wrists, hips. In detail, we extracted the human keypoint coordinates from human targets in multimodal fused videos. The coordinate values are used as inputs to train a multilayer perceptron network to classify human behaviors as normal or abnormal. Our experiment demonstrates a significant result on multimodal imaging dataset. The proposed model can capture the complex distribution pattern for both normal and abnormal behaviors.

Performance Analysis of Anomaly Area Segmentation in Industrial Products Based on Self-Attention Deep Learning Model (Self-Attention 딥러닝 모델 기반 산업 제품의 이상 영역 분할 성능 분석)

  • Changjoon Park;Namjung Kim;Junhwi Park;Jaehyun Lee;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.45-46
    • /
    • 2024
  • 본 논문에서는 Self-Attention 기반 딥러닝 기법인 Dense Prediction Transformer(DPT) 모델을 MVTec Anomaly Detection(MVTec AD) 데이터셋에 적용하여 실제 산업 제품 이미지 내 이상 부분을 분할하는 연구를 진행하였다. DPT 모델의 적용을 통해 기존 Convolutional Neural Network(CNN) 기반 이상 탐지기법의 한계점인 지역적 Feature 추출 및 고정된 수용영역으로 인한 문제를 개선하였으며, 실제 산업 제품 데이터에서의 이상 분할 시 기존 주력 기법인 U-Net의 구조를 적용한 최고 성능의 모델보다 1.14%만큼의 성능 향상을 보임에 따라 Self-Attention 기반 딥러닝 기법의 적용이 산업 제품 이상 분할에 효과적임을 입증하였다.

  • PDF

Quantification Analysis of Soft Power through Sentiment Analysis (감성분석을 통한 소프트 파워의 수치화 분석)

  • An-Min;Bong-Hyun Kim
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.1-7
    • /
    • 2024
  • This paper deals with the topic of quantification of soft power through emotional analysis. Sentiment analysis refers to the process of detecting and analyzing emotions or emotions in various data such as text, voice, and images. Therefore, in this paper, we explored the methodology and significance of how soft power can be quantified through emotional analysis. Soft power refers to the ability of a country or organization to influence the behavior of another country or organization in a desired direction. It is built by soft factors such as culture, values, and political system rather than military or economic means. Additionally, sentiment analysis is being used as a useful tool to measure and understand these soft areas.

Crack Detection on Bridge Deck Using Generative Adversarial Networks and Deep Learning (적대적 생성 신경망과 딥러닝을 이용한 교량 상판의 균열 감지)

  • Ji, Bongjun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.303-310
    • /
    • 2021
  • Cracks in bridges are important factors that indicate the condition of bridges and should be monitored periodically. However, a visual inspection conducted by a human expert has problems in cost, time, and reliability. Therefore, in recent years, researches to apply a deep learning model are started to be conducted. Deep learning requires sufficient data on the situations to be predicted, but bridge crack data is relatively difficult to obtain. In particular, it is difficult to collect a large amount of crack data in a specific situation because the shape of bridge cracks may vary depending on the bridge's design, location, and construction method. This study developed a crack detection model that generates and trains insufficient crack data through a Generative Adversarial Network. GAN successfully generated data statistically similar to the given crack data, and accordingly, crack detection was possible with about 3% higher accuracy when using the generated image than when the generated image was not used. This approach is expected to effectively improve the performance of the detection model as it is applied when crack detection on bridges is required, though there is not enough data, also when there is relatively little or much data f or one class.

Unmanned Multi-Sensor based Observation System for Frost Detection - Design, Installation and Test Operation (서리 탐지를 위한 '무인 다중센서 기반의 관측 시스템' 고안, 설치 및 시험 운영)

  • Kim, Suhyun;Lee, Seung-Jae;Son, Seungwon;Cho, Sungsik;Jo, Eunsu;Kim, Kyurang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.95-114
    • /
    • 2022
  • This study presented the possibility of automatic frost observation and the related image data acquisition through the design and installation of a Multiple-sensor based Frost Observation System (MFOS). The MFOS is composed of an RGB camera, a thermal camera and a leaf wetness sensor, and each device performs complementary roles. Through the test operation of the equipment before the occurrence of frost, the voltage value of the leaf wetness sensor increased when maintaining high relative humidity in the case of no precipitation. In the case of Gapyeong- gun, the high relative humidity was maintained due to the surrounding agricultural waterways, so the voltage value increased significantly. In the RGB camera image, leaf wetness sensor and the surface were not observed before sunrise and after sunset, but were observed for the rest of the time. In the case of precipitation, the voltage value of the leaf wetness sensor rapidly increased during the precipitation period and decreased after the precipitation was terminated. In the RGB camera image, the leaf wetness sensor and surface were observed regardless of the precipitation phenomenon, but the thermal camera image was taken due to the precipitation phenomenon, but the leaf wetness sensor and surface were not observed. Through, where actual frost occurred, it was confirmed that the voltage value of leaf wetness sensor was higher than the range corresponding to frost, but frost was observed on the surface and equipment surface by the RGB camera.

Deep Learning-based Abnormal Behavior Detection System for Dementia Patients (치매 환자를 위한 딥러닝 기반 이상 행동 탐지 시스템)

  • Kim, Kookjin;Lee, Seungjin;Kim, Sungjoong;Kim, Jaegeun;Shin, Dongil;shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.133-144
    • /
    • 2020
  • The number of elderly people with dementia is increasing as fast as the proportion of older people due to aging, which creates a social and economic burden. In particular, dementia care costs, including indirect costs such as increased care costs due to lost caregiver hours and caregivers, have grown exponentially over the years. In order to reduce these costs, it is urgent to introduce a management system to care for dementia patients. Therefore, this study proposes a sensor-based abnormal behavior detection system to manage dementia patients who live alone or in an environment where they cannot always take care of dementia patients. Existing studies were merely evaluating behavior or evaluating normal behavior, and there were studies that perceived behavior by processing images, not data from sensors. In this study, we recognized the limitation of real data collection and used both the auto-encoder, the unsupervised learning model, and the LSTM, the supervised learning model. Autoencoder, an unsupervised learning model, trained normal behavioral data to learn patterns for normal behavior, and LSTM further refined classification by learning behaviors that could be perceived by sensors. The test results show that each model has about 96% and 98% accuracy and is designed to pass the LSTM model when the autoencoder outlier has more than 3%. The system is expected to effectively manage the elderly and dementia patients who live alone and reduce the cost of caring.

Research Trend Analysis for Fault Detection Methods Using Machine Learning (머신러닝을 사용한 단층 탐지 기술 연구 동향 분석)

  • Bae, Wooram;Ha, Wansoo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • A fault is a geological structure that can be a migration path or a cap rock of hydrocarbon such as oil and gas, formed from source rock. The fault is one of the main targets of seismic exploration to find reservoirs in which hydrocarbon have accumulated. However, conventional fault detection methods using lateral discontinuity in seismic data such as semblance, coherence, variance, gradient magnitude and fault likelihood, have problem that professional interpreters have to invest lots of time and computational costs. Therefore, many researchers are conducting various studies to save computational costs and time for fault interpretation, and machine learning technologies attracted attention recently. Among various machine learning technologies, many researchers are conducting fault interpretation studies using the support vector machine, multi-layer perceptron, deep neural networks and convolutional neural networks algorithms. Especially, researchers use not only their own convolution networks but also proven networks in image processing to predict fault locations and fault information such as strike and dip. In this paper, by investigating and analyzing these studies, we found that the convolutional neural networks based on the U-Net from image processing is the most effective one for fault detection and interpretation. Further studies can expect better results from fault detection and interpretation using the convolutional neural networks along with transfer learning and data augmentation.

Comparison between QraypenTM Imaging and the Conventional Methods of Visual Inspection and Periapical Radiography for Proximal Caries Detection in Primary Molars: An In Vivo Study (유구치 인접면 우식 병소 진단에 있어 QraypenTM과 시진 및 구내 치근단 방사선의 비교)

  • An, So-Youn;Park, So-Young;Shim, Youn-Soo
    • Journal of dental hygiene science
    • /
    • v.16 no.5
    • /
    • pp.349-354
    • /
    • 2016
  • The purpose of this study was to evaluate the efficacy of the newly-developed $Qraypen^{TM}$ (All In One Bio, Korea) system for the diagnosis of early proximal caries by comparing it with the conventional methods of visual inspection and periapical radiography. This study was carried out from July 2015 to April 2016 targeting 32 children aged 7~12 years who visited Y-Dental Clinic for school oral health examinations. Two investigators selected and examined a total of 153 primary molars that had not undergone restorative treatment. Comparisons were carried out between visual inspections, readings of posterior periapical radiography images, and readings of $Qraypen^{TM}$ images. This study revealed that the percentage of interproximal surfaces of primary molar teeth without caries incidence was 83.7% using $Qraypen^{TM}$ imaging and 84.9% using visual inspection and periapical radiography. The differences between the two methods were not statistically significant. Thus, $Qraypen^{TM}$ is expected to be a useful and convenient auxiliary diagnostic device that can facilitate the detection of hidden proximal caries in primary molars.

Development of Mask-RCNN Model for Detecting Greenhouses Based on Satellite Image (위성이미지 기반 시설하우스 판별 Mask-RCNN 모델 개발)

  • Kim, Yun Seok;Heo, Seong;Yoon, Seong Uk;Ahn, Jinhyun;Choi, Inchan;Chang, Sungyul;Lee, Seung-Jae;Chung, Yong Suk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • The number of smart farms has increased to save labor in agricultural production as the subsidy become available from central and local governments. The number of illegal greenhouses has also increased, which causes serious issues for the local governments. In the present study, we developed Mask-RCNN model to detect greenhouses based on satellite images. Greenhouses in the satellite images were labeled for training and validation of the model. The Mask-RC NN model had the average precision (AP) of 75.6%. The average precision values for 50% and 75% of overlapping area were 91.1% and 81.8%, respectively. This results indicated that the Mask-RC NN model would be useful to detect the greenhouses recently built without proper permission using a periodical screening procedure based on satellite images. Furthermore, the model can be connected with GIS to establish unified management system for greenhouses. It can also be applied to the statistical analysis of the number and total area of greenhouses.

A Study on Field Compost Detection by Using Unmanned AerialVehicle Image and Semantic Segmentation Technique based Deep Learning (무인항공기 영상과 딥러닝 기반의 의미론적 분할 기법을 활용한 야적퇴비 탐지 연구)

  • Kim, Na-Kyeong;Park, Mi-So;Jeong, Min-Ji;Hwang, Do-Hyun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.367-378
    • /
    • 2021
  • Field compost is a representative non-point pollution source for livestock. If the field compost flows into the water system due to rainfall, nutrients such as phosphorus and nitrogen contained in the field compost can adversely affect the water quality of the river. In this paper, we propose a method for detecting field compost using unmanned aerial vehicle images and deep learning-based semantic segmentation. Based on 39 ortho images acquired in the study area, about 30,000 data were obtained through data augmentation. Then, the accuracy was evaluated by applying the semantic segmentation algorithm developed based on U-net and the filtering technique of Open CV. As a result of the accuracy evaluation, the pixel accuracy was 99.97%, the precision was 83.80%, the recall rate was 60.95%, and the F1-Score was 70.57%. The low recall compared to precision is due to the underestimation of compost pixels when there is a small proportion of compost pixels at the edges of the image. After, It seems that accuracy can be improved by combining additional data sets with additional bands other than the RGB band.