클라우드 컴퓨팅 환경에서 가상 컴퓨팅 및 스토리지 자원에 대한 요구가 대규모로 증가하면서 스토리지 시스템에서는 스토리지 공간을 효율적으로 절감하고 활용할 수 있는 중복제거 기법을 적용하고 있다. 특히 가상 데스크탑 인프라 환경에서 가상 데스크탑 이미지들에 대해 동일한 데이터가 중복되어 저장되는 것을 방지함으로써 스토리지 공간을 절감하는데 큰 효과를 얻을 수 있다. 하지만 안정적인 가상 데스크탑 서비스를 제공하기 위해서는 중복제거로 인한 가상 데스크탑의 성능 오버헤드와 주기적으로 발생하는 데이터 입출력 폭증, 그리고 빈번한 랜덤 입출력 동작과 같은 가상 데스크탑이 가지고 있는 특이한 워크로드를 효과적으로 처리할 수 있는 스토리지 시스템이 필요하다. 본 논문에서는 클라우드 컴퓨팅 환경에서 가상 데스크탑 및 스토리지 서비스를 지원하기 위해 개발된 클러스터 파일 시스템을 제시한다. 여기에서는 가상 데스크탑 이미지들에서 중복된 데이터가 스토리지에 저장되기 이전에 실시간으로 검출하고 제거하는 인라인 데이터 중복제거 기법을 통해 스토리지 공간을 절감한다. 또한 가상 데스크탑 이미지에 대한 중복제거 처리를 가상 호스트가 아니라 가상 데스크탑 이미지가 실제로 저장되는 데이터 서버에서 수행함으로써 중복제거 처리로 인한 가상 데스크탑의 성능 오버헤드를 줄인다.
윤곽선 이미지를 시계열로 변환하는 작업은 빠르고 상호작용 방식이 매우 중요한 대용량 이미지 데이터베이스에서도 윤곽선 매칭 수행을 가능 할 수 있게 만든다. 최근 연구에서는 윤곽선 이미지를 시계열 데이터로 변환하여 부분 노이즈제거를 고려하면서 빠르게 매칭을 수행하려는 시도가 있었다. 본 논문에서는 성능 향상을 위해 임의의 노이즈제거를 위해 임의의 모든 노이즈제거 매개 변수를 고려한 색인 구축 방법을 제안한다. 이는 가능한 모든 노이즈제거 매개 변수에 따른 부분 노이즈제거를 고려해야하기 때문에 어려운 문제이다. 본 논문에서는 다차원 색인인 R*-tree를 사용하여 모든 가능한 노이즈제거 매개 변수에 의한 최소 경계 영역(MBR)을 구성하여 효율적인 단일 생성 알고리즘을 제안한다. 다양한 실험 결과, 제안한 색인 기반 매칭 방법은 검색 성능을 최대 46.6 ~ 4023.6 배나 향상시킨다.
본 논문에서는 FET의 채널저항을 이용한 이미지 제거 혼합기를 제작하여 그 특성을 분석하였다. 이 혼합기는 IF 50MHz~90MHz, LO 8.17GHz 및 RF 8.08GHz~8.12GHz로써 8GHz대역의 64QAM에 적용할 수 있도록 하였다. 측정 결과 -20dBm의 IF 신호와 10dBm의 LO 신호를 인가하였을 때 -33.2dBm의 RF 출력을 얻었으며, 약 12.9dB의 변환손실을 보였으며, 8.1GHz RF 신호에 대하여 LO 신호는 14.3dB, 이미지 신호는 10.4dB의 억압특성을 얻을 수 있었다. 또한 2-tone실험 결과 51.7dBc의 IMD 특성을 얻을 수 있었다.
본 연구는 환자의 알레르기 예방시스템을 구축하기 위해 스마트폰을 이용하여 저장된 처방전의 이미지잡음제거를 위한 ROI 추출 방법에 중점을 두었다. 현재 ROI 추출은 제한된 실험 환경에서 좋은 성능을 보여 주었지만 실제 환경에서의 성능은 잡음으로 인해 좋지 않았다. 따라서 본 연구에서는 정확도 높은 ROI 추출을 위해 스마트폰 영상에서 발생하는 잡음제거 방법을 제안한다. SMF, DIN, DAE, DAECNN(Denoising Autoencoder with Convolution Neural Network) and median filter with DAECNN(MF+DAECNN) 방법을 실험하였고 그 결과 DAECNN 및 MF + DAECNN 방법이 스마트폰에서 이미지의 잡음제거가 효과적임을 보여주었다. 성능 향상을 검증하기 위해 SSIM, PSNR 및 MSE 방법을 사용하였고 이 시스템은 OpenCV, C ++ 및 Python로 구현 및 실험되었고 실제 이미지에서 성능 테스트를 거쳐 자연잡음(natural noise)을 제거하는데 본 논문에서 제안한 DAECNN과 MF+DAECNN이 각 69%로 기존의 DAE 방법 55% 보다 상대적으로 높은 결과를 도출하였다.
웨이블릿 디노이징 기법은 웨이블릿 계수들의 thresholding 에 의해 부가적인 가우시안 노이즈들을 제가하는데 사용된다. 필터에 기반한 다른 많은 변환들처럼, 웨이블릿 scaling 방법들은 이미지의 경계선들의 근처에 블러링 현상이나 인공적인 잡음들이 나타나게 된다. 본 논문에서 구현하고자 하는 웨이블릿 변환 필터의 구현 배경은 경계선 부분의 손실없이 이미지의 노이즈 제거를 위한 것이다. 많은 이미지 향상과 회복기법들은 이러한 붕괴처리의 효과들을 위한 보상으로 개발되었다. 또한 뉴럴 필터, 퍼지 필터, LMS L-filter, quadratic filter, sigma filter 등은 이러한 이미지의 질을 개선하기 위한 수학적인 도구들이라고 할 수 있다. [1]
3차원 형상을 측정하는 측정법으로는 접촉식과 비접촉식이 있는데 최근에는 물체의 표면을 손상 시키지 않으면서 물체의 변형 상태 등을 정밀하게 측정할 수 있는 비접촉식 측정법이 주로 사용되어 지면서 변형, 진동, 결함 등의 다양한 측정 분야에 찰용되고 있다. 이는 광학 간섭의 하나인 Twyman-Green 간섭계를 이용하여 간섭 무의 패턴을 PZT Controller로 위상 이동하여 CCD 카메라로 물체의 영상을 얻어 위상 지도를 추출, 이미지를 분석하여 3차원 물체를 해석하고자 한다. 하지만 이미지 측정시 미세 진동 및 조명 등에 의한 노이즈가 발생하게 되어 물체의 정확한 정보를 얻기가 어려워 노이즈 제거를 위한 이미지 처리 알고리즘 개발과 Unwrapping 처리, 위상이동 알고리즘 개발 등을 통하여 좀더 정확한 정보를 얻고자 한다.
오래 전부터 모델 기반 최적화 방법이 이미지 디블러링을 위해 널리 사용되어 왔고, 최근에는 학습 기반 기술이 영상 디블러링에서 좋은 성과를 보이고 있다. 본 논문은 ADMM과 깊은 합성곱 신경망 잡음 제거기 이미지 prior를 이용하여 모델 기반 최적화 방법의 장점과 학습 기반 방법의 장점을 모두 활용할 수 있는 방법을 제안한다. 본 방법을 이용하여 기존 방법보다 더 좋은 디블러링 성능을 얻을 수 있었다.
본 논문에서는 새로운 칼라 모폴로지 피라미드를 제안하고. 제안된 칼라 모폴로지의 유용성 평가를 위해 이미지에서 중요한 에지를 검출하고자 한다. 여기서 이미지 피라미드 구조는 최초 컬러 이미지의 반복적인 필터링과 샘플링의 순차적인 실험 과정의 단계를 본 논문에서 제안한 CMP를 이용하여 연속적인 필터링 처리로 불필요한 크기의 물체 및 잡음을 제거하여. 효율적인 특징 추출의 유효성을 검증하고자 한다.
자동으로 이미지 안에 존재하는 객체들을 인식하는 문제는 내용 기반 이미지 검색이나 로봇 비전과 같은 다양한 분야들에서 매우 중요한 문제이다. 이 문제를 해결하기 위하여 본 논문에서는 객체의 주요 색상 정보들을 이용하여 실시간으로 이미지 안의 객체들을 인식하는 알고리즘을 제안한다. 본 논문에서 제안하는 방법의 전체적인 구조는 다음과 같다. 처음에 MPEG-7 색상 정보 기술자들 중 하나인 주요 색상 정보 기술자를 이용하여 객체의 주요 색상 정보들을 추출한다. 이 때 이 정보는 가우시안 색상 모델링을 통하여 빛이나 그림자와 같은 외부 환경 조건에 좀 더 강인한 색상 정보로 변환된다. 다음으로 변환된 색상 정보들을 기반으로 주요 객체와 입력 이미지와의 픽셀 값차이를 계산하고, 임계값 이상의 값을 가지는 픽셀들을 제거한다. 마지막으로 입력 이미지에서 제거되지 않은 픽셀들을 기반으로 하나의 영역을 생성한다. 결론으로서, 본 논문에서는 제안된 방법에 대한 실험 평가들을 수행 및 분석하고 몇몇 한계점들에 대해서 알아본다. 또한 이 문제들을 해결하기 위한 앞으로의 연구 계획에 대해서 기술한다.
본 논문에서는 윤곽선 이미지 매칭에서 노이즈 제거 정도를 제어하기 위해 시계열 매칭의 이동평균 변환을 이용한다. 이동평균 변환을 윤곽선 이미지 매칭에 적용하게 된 동기는 이동평균 변환이 시계열의 노이즈를 감소시키므로, 이를 사용하면 윤곽선 이미지 매칭에서도 노이즈 제어 효과를 얻을 수 있을 것이라는 직관에 기반한다. 본 논문에서는 우선 윤곽선 이미지 매칭에 이동평균 변환을 적용한 $\kappa$-계수 이미지 매칭($\kappa$-order image matching)을 제안한다. 제안한 $\kappa$-계수 이미지 매칭은 윤곽선 이미지가 변환된 시계열에 $\kappa$-이동평균 변환을 적용하여 시계열(이미지) 간의 유사성을 판단한다. 다음으로, 대용량 이미지 데이터베이스를 대상으로 $\kappa$-계수 이미지 매칭을 수행하기 위한 인덱스 기반 매칭 방법을 제안하고, 그 정확성을 정형적으로 증명한다. 또한, 계수 $\kappa$와 매칭 결과와의 관계를 정형적으로 분석하고, 이에 기반하여 계수 $\kappa$를 변화시키면서 노이즈 제거 정도를 제어하는 방안을 제시한다. 실험 결과, $\kappa$-계수 이미지 매칭이 노이즈 제거 효과를 가짐을 확인하였으며, 제안한 인덱스 기반 매칭 방법은 순차 스캔에 비해 수 배 에서 수십 배 빠른 성능을 보이는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.