• Title/Summary/Keyword: 이미지 아웃페인팅

검색결과 2건 처리시간 0.016초

딥러닝 기반 이미지 아웃페인팅 기술의 현황 및 최신 동향 (A Review on Deep Learning-based Image Outpainting)

  • 김경훈;공경보;강석주
    • 방송공학회논문지
    • /
    • 제26권1호
    • /
    • pp.61-69
    • /
    • 2021
  • 이미지 아웃페인팅은 이미지의 맥락을 고려하여 주어진 이미지의 외부를 지속적으로 채울 수 있다는 점에서 매우 흥미로운 문제이다. 이 작업에는 두 가지 주요 과제가 있다. 첫 번째는 생성된 영역의 내용과 원래 입력의 공간적 일관성을 유지하는 것이다. 두 번째는 적은 양의 인접 정보로 고품질의 큰 이미지를 생성하는 것이다. 기존의 이미지 아웃페인팅 방법은 일관되지 않고 흐릿하며 반복되는 픽셀을 생성하는 등 어려움을 겪고 있다. 하지만 최근 딥러닝 기술의 발달에 힘입어 기존의 전통적인 기법들에 비해 높은 성능을 보여주고 있는 알고리즘들이 소개되었다. 딥러닝 기반 아웃 페인팅은 현재까지도 다양한 네트워크가 제안되며 활발히 연구되고 있다. 본 논문에서는 아웃 페인팅 분야의 최신 기술 현황 및 동향을 소개하고자 한다. 딥러닝 기반의 아웃페인팅 알고리즘 중 대표적인 네트워크들을 분석하고 다양한 데이터 셋과 비교 방법을 통한 실험 결과를 보여줌으로써 최근 기법들을 비교하고자 한다.

아웃페인팅 기반 반려동물 자세 추정에 관한 예비 연구 (A Pilot Study on Outpainting-powered Pet Pose Estimation)

  • 이규빈;이영찬;유원상
    • 융합신호처리학회논문지
    • /
    • 제24권1호
    • /
    • pp.69-75
    • /
    • 2023
  • 최근 동물 행동 분석 및 건강관리 분야를 중심으로 딥러닝 기반 동물 자세 추정 기법에 대한 관심이 높아지고 있다. 그러나 기존 동물 자세 추정 기법은 영상에서 신체 부위가 가려지거나 존재하지 않을 경우 좋은 성능을 보이지 않는다. 특히 꼬리나 귀가 가려진 경우, 반려견의 행동 및 감정 분석의 성능에도 심각한 영향을 미친다. 본 논문에서는 이러한 다루기 힘든 문제를 해결하기 위해, 이미지 아웃페인팅 네트워크를 자세 추정 네트워크에 연결하여 이미지 외부에 존재하는 반려견의 신체를 복원한 확장된 이미지를 생성하여 반려견의 자세를 추정하는 단순하면서도 새로운 접근방법을 제안하였고, 제안된 방법의 실현가능성을 검토하는 예비 연구를 수행하였다. 이미지 아웃페인팅 모델로는 CE-GAN과 트랜스포머 기반의 BAT-Fill을 사용하였고, 자세 추정 모델로는 SimpleBaseline을 사용하였다. 실험 결과, 크롭된 입력 이미지에서 반려견의 자세를 추정하였을 때보다, BAT-Fill을 사용하여 아웃페인팅된 확장 이미지에서 반려견의 자세를 추정하였을 때 자세 추정의 성능이 향상되었다.