• Title/Summary/Keyword: 이미지 변환

Search Result 961, Processing Time 0.049 seconds

Enhanced Dispersive Packetization Scheme for Reliable Transmission of wavelet Image (신뢰성 있는 웨이블릿 이미지 전송을 위한 패킷타이징 기법)

  • 장신애;이주경;정기동
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.475-477
    • /
    • 2002
  • 이미지 압축을 위한 새로운 기법 중의 하나가 웨이블릿 변환이다. 웨이블릿 변환된 이미지는 이미지 전체의 중요 정보가 한쪽으로 치우치는 경향을 보인다. 그러므로 웨이블 이미지를 순차적으로 네트웍상에 전송한다면 중요 정보가 포함된 패킷에 손실이 발생할 경우 이미지의 품질에 치명적인 영향을 미친다. 본 논문에서는 전송된 웨이블릿 이미지의 품질을 보장하기 위한 새로운 패킷타이징 기법을 제안한다. 즉 주파수 부대역(frequency subband)을 여러 개의 블록으로 나누고, 이 블록들을 서로 다른 패킷에 삽입하여 패킷의 중요도를 분산하는 것이다. 또한 주파수대역이 가장 낮은 부대역 정보를 중복하여 전송함으로써 이미지 전체의 품질을 보장한다. 제안된 기법의 성능을 평가하기 위해 객관적인 성능평가 단위인 PSNR과 주관적인 이미지 분석을 수행하였다. 실험결과 제안된 기법의 성능이 순차적인 블록 패킷 기법에 비하여 PSNR에서 1~4 ㏈ 높았으며, 이미지의 선명도도 높음을 알 수 있었다.

  • PDF

Quantization Index Modulation Data Hiding Algorithm robust against Image Format Variation (이미지 포맷변환에 강인한 양자화 인덱스 변조 기반의 정보은닉 알고리즘)

  • Baik, Jong Hyun;Shin, Jeong Hwan;Heo, Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.25-27
    • /
    • 2011
  • 본 논문에서는 이미지 블록의 평균 픽셀 값 특성을 양자화 인덱스 변조 기법에 적용하여 이미지 포맷변환에 강인한 정보은닉 기법을 제안한다. 포맷변환에 강인한 이미지 속성은 정규화된 픽셀 히스토그램에 기반하여 분석되며, 그 중 평균 픽셀 값을 통해 정보은닉 알고리즘이 구성된다. 평균 픽셀 값을 양자화 인덱스 변조기법에 적용하기 위한 방안으로 DCT 계수를 정규화 하는 방법이 선택되며, 추출 성공률을 높이기 위해 오류정정부호가 사용된다. 따라서 본 논문의 알고리즘을 통해 결합 이미지가 압축, 사이즈 변화 등의 과정을 거치게 될 경우 발생하는 문제점을 극복할 수 있다.

  • PDF

Scene Text Detection Using Color-Based Binarization and Text Region Verification Using Support Vector Machine (색기반 이진화를 이용한 장면 텍스트 추출과 써포트 벡터머신을 이용한 텍스트 영역 검증)

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.161-163
    • /
    • 2007
  • 기존의 텍스트 추출을 위한 이진화 방법은 입력 이미지를 명도 이미지로 변환한 뒤 이진화 하는 방법을 사용하였다. 이러한 방법은 칼라 이미지에서는 극명히 구분되는 색이라 할지라도 명도 이미지로 변환하는 과정에서 같은 밝기를 같게 되는 경우(예를 들어, 배경은 붉은색, 텍스트는 초록색), 텍스트를 추출하는 데 어려움이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 입력 이미지를 R, G, B로 분리하고 각각을 이진화 하여 텍스트를 추출하고 다해상도 웨이블릿(Wavelet) 변환을 이용하여 텍스트의 획 특징을 추출하여 추출된 특징들을 SVM(Support Vector Machine) 분류기로 검증하여 최종 텍스트 영역을 확정한다. 제안한 방법을 적용함으로써 명도 정보만으로는 추출하기 어려웠던 텍스트 영역을 효과적으로 추출하고 텍스트와 구별하기 어려운 영역을 획수준으로 검증할 수 있었다.

  • PDF

A DFT Deblurring Algorithm of Blind Blur Image (무정보 blur 이미지 복구를 위한 DFT 변환)

  • Moon, Kyung-Il;Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.3
    • /
    • pp.517-524
    • /
    • 2011
  • This paper presents a fast blind deconvolution method that produces a deblurring result from a single image in only a few seconds. The high speed of our method is enabled by considering the Discrete Fourier Transform (DFT), and its relation to filtering and convolution, and fast computation of Moore-Penrose inverse matrix. How can we predict the behavior of an arbitrary filter, or even more to the point design a filter to achieve certain specifications. The idea is to study the frequency response of the filter. This concept leads to an useful convolution formula. A Matlab implementation of our method usually takes less than one minute to deblur an image of moderate size, while the deblurring quality is comparable.

  • PDF

Adaptative Retrieval Method for Brain Image using Wavelet (웨이블릿 변환을 이용한 적응적 뇌영상 검색 방안)

  • 구혜영;엄기현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.447-452
    • /
    • 2001
  • 내용 기반 이미지 검색에서 질감정보는 이미지의 검색 속성으로 사용할 수 있는 중요한 정보를 가지고 있다. 본 논문에서는 검색의 이미지 속성으로서 질감 특징을 사용한다. 의료영상 MRI 중 특히 뇌영상의 검색에서 질감의 특징은 전체 이미지를 대상으로 한 전역 질감 특징 값과 종양이나 뇌출혈 부분 등 정상이 아닌 이상객체 부분의 지역 질감 특징 값을 3단계 웨이블릿 변환을 통해 추출하고 추출된 여러 개의 특징 중 검색 효율성을 높일 수 있는 특징만을 선별하여 검색에 이용하는 방안을 제안한다.

  • PDF

Content-Based Image Retrieval Using Directional Feature and Color Feature (방향성 정보와 색 정보를 이용한 내용기반 이미지 검색)

  • 정호영;황환규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.127-129
    • /
    • 2000
  • 일반적인 색 정보추출방법으로 색 히스토그램(Color Histogram)은 색의 분포나 응집성, 질감에 대한 구분능력이 없다는 단점을 가지고 있어 정환한 이미지 유사성 비교를 위해 추가적인 정보를 요구한다. Androutsos등은 Haar Wavelet 변환을 통해 이미지의 방향성 질감정보를 구하였다[1]. 하지만 이 방법은 Haar Wavelet 변환의 특성으로 인해 정확한 방향성 정보를 얻을 수 없었다. 본 논문에서는 인접 픽셀(pixel)값의 편차(deviaiton)를 이용하여 방향성 정보를 추출 성능을 향상시키는 방법을 제안하였고, Brodatz 112 질감 이미지와 실재 자연사진을 통해 방향성 질감의 성능을 평가하였다.

  • PDF

Orthoscopic integral imaging by use of concave-convex lens array coupling (오목-볼록 렌즈 어레이 결합을 이용한 orthoscopic 집적결상)

  • 서장일;차성도;신승호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.238-239
    • /
    • 2003
  • 집적결상(integral imaging)에서 렌즈어레이(lens array)를 이용하여 3차원적인 물체를 기본영상(elemental image)들로 결상한 후, 다시 그 기본 이미지들로부터 3차원 이미지를 재생하는 과정에서 기본 이미지들을 변환시키지 않으면, 3차원 이미지가 재생될 때, 렌즈어레이와 수직한 축에 대해 렌즈어레이에 가까운 쪽과 먼 쪽이 서로 바뀌는 슈도스코픽(pseudoscopic) 현상이 일어난다. 그래서 기본이미지들을 변환시키기 위해 렌즈어레이를 한번 더 사용한 이단 집적결상계를 이용하거나 영상처리 방법을 이용하는데, 이와 같은 방법은 광학적 손실을 크게 하거나 처리 속도를 느리게 한다. (중략)

  • PDF

A Spatial Pyramid Matching LDA Model using Sparse Coding for Classification of Sports Scene Images (스포츠 이미지 분류를 위한 희소 부호화 기법을 이용한 공간 피라미드 매칭 LDA 모델)

  • Jeon, Jin;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.35-36
    • /
    • 2016
  • 본 논문에서는 기존 Bag-of-Visual words (BoW) 접근법에서 반영하지 못한 이미지의 공간 정보를 활용하기 위해서 Spatial Pyramid Matching (SPM) 기법을 Latent Dirichlet Allocation (LDA) 모델에 결합하여 이미지를 분류하는 모델을 제안한다. BoW 접근법은 이미지 패치를 시각적 단어로 변환하여 시각적 단어의 분포로 이미지를 표현하는 기법이며, 기존의 방식이 이미지 패치의 위치정보를 활용하지 못하는 점을 극복하기 위하여 SPM 기법을 도입하는 연구가 진행되어 왔다. 또한 이미지 패치를 정확하게 표현하기 위해서 벡터 양자화 대신 희소 부호화 기법을 이용하여 이미지 패치를 시각적 단어로 변환하였다. 제안하는 모델은 BoW 접근법을 기반으로 위치정보를 활용하는 SPM 을 LDA 모델에 적용하여 시각적 단어의 토픽을 추론함과 동시에 multi-class SVM 분류기를 이용하여 이미지를 분류한다. UIUC 스포츠 데이터를 이용하여 제안하는 모델의 분류 성능을 검증하였다.

  • PDF

2D to 3D Anaglyph Image Conversion using Linear Curve in HTML5 (HTML5에서 직선의 기울기를 이용한 2D to 3D 입체 이미지 변환)

  • Park, Young Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.521-528
    • /
    • 2014
  • In this paper, we propose the method of converting 2D image to 3D image using linear curves in HTML5. We use only one image without any other information about depth map for creating 3D images. So we filter the original image to extract RGB colors for left and right eyes. After selecting the ready-made control point of linear curves to set up depth values, users can set up the depth values and modify them. Based on the depth values that the end users select, we reflect them. Anaglyph 3D is automatically made with the whole and partial depth information. As all of this work has been designed and implemented in Web environment using HTML5, it is very easy and convenient and end users can create any 3D image that they want to make.

An Improved RANSAC Algorithm Based on Correspondence Point Information for Calculating Correct Conversion of Image Stitching (이미지 Stitching의 정확한 변환관계 계산을 위한 대응점 관계정보 기반의 개선된 RANSAC 알고리즘)

  • Lee, Hyunchul;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • Recently, the use of image stitching technology has been increasing as the number of contents based on virtual reality increases. Image Stitching is a method for matching multiple images to produce a high resolution image and a wide field of view image. The image stitching is used in various fields beyond the limitation of images generated from one camera. Image Stitching detects feature points and corresponding points to match multiple images, and calculates the homography among images using the RANSAC algorithm. Generally, corresponding points are needed for calculating conversion relation. However, the corresponding points include various types of noise that can be caused by false assumptions or errors about the conversion relationship. This noise is an obstacle to accurately predict the conversion relation. Therefore, RANSAC algorithm is used to construct an accurate conversion relationship from the outliers that interfere with the prediction of the model parameters because matching methods can usually occur incorrect correspondence points. In this paper, we propose an algorithm that extracts more accurate inliers and computes accurate transformation relations by using correspondence point relation information used in RANSAC algorithm. The correspondence point relation information uses distance ratio between corresponding points used in image matching. This paper aims to reduce the processing time while maintaining the same performance as RANSAC.