• Title/Summary/Keyword: 이미지 딥러닝

Search Result 842, Processing Time 0.032 seconds

A Study on Application Method of Contour Image Learning to improve the Accuracy of CNN by Data (데이터별 딥러닝 학습 모델의 정확도 향상을 위한 외곽선 특징 적용방안 연구)

  • Kwon, Yong-Soo;Hwang, Seung-Yeon;Shin, Dong-Jin;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.171-176
    • /
    • 2022
  • CNN is a type of deep learning and is a neural network used to process images or image data. The filter traverses the image and extracts features of the image to distinguish the image. Deep learning has the characteristic that the more data, the better models can be made, and CNN uses a method of artificially increasing the amount of data by means of data augmentation such as rotation, zoom, shift, and flip to compensate for the weakness of less data. When learning CNN, we would like to check whether outline image learning is helpful in improving performance compared to conventional data augmentation techniques.

Evaluation of a Deblur Deep Learning Model for Image Registration Collected from Robots and Drones (로봇 및 드론 센서로 수집한 이미지 정합을 위한 Deblur 딥러닝 모델 평가)

  • Lee, Hye-min;Kwon, Hye-min;Moon, Hansol;Lee, Chang-kyo;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.153-155
    • /
    • 2022
  • Recently, we are using robots and drones to collect images. However, as the robot or drone is shaken by external influences, pre-processing technology to register images is required. Therefore, in this paper, we use autonomous robots, drones dataset and improve the quality of shaken image data through the Deblur deep learning model. We confirmed through the experimental results that the shaken images were registered and evaluated the model.

  • PDF

Age and gender prediction model using CNN (CNN 알고리즘을 이용한 나이와 성별 구분 모델)

  • Sung Han Shin;Heung Seok Jeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.47-50
    • /
    • 2023
  • 본 논문에서는 딥러닝 CNN 알고리즘을 이용하여 사람의 얼굴 이미지를 학습한 다음 나이와 성별을 예측하는 시스템을 제안한다. 이 시스템은 개개인 마다 각기 다른 외형적 특성을 고려하여 이를 분석한 다음 이에 맞는 헤어 스타일, 옷차림을 추천할 수 있다. 해당 기술을 활용하여 메타버스 아바타 생성에 사용자의 얼굴과 같은 신체적 특성을 고려할 수 있다. 향후에는 신체 전체를 이미지화하여 보다 더 다양한 정보를 인식할 수 있도록 연구를 진행할 것이다.

  • PDF

Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Deep Learning Regression Model (딥러닝 모형을 이용한 Sentinel SAR 기반 고해상도 토양수분 산정)

  • Lee, Taehwa;Kim, Sangwoo;Chun, Beomseok;Jung, Younghun;Shin, Yongchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.114-114
    • /
    • 2021
  • 본 연구에서는 Sentinel-1 SAR 센서 기반 이미지자료와 딥러닝기법을 이용하여 고해상도 토양수분을 산정하였다. 입력자료는 지표특성(모래함량, 점토함량, 경사도), 인공위성 기반의 강우와 LANDSAT 기반의 이미지자료(NDVI, LST, 공간분포 토양수분)를 사용하였다. 강우자료의 경우 GPM(Global Precipitation Measurement) 일강우 자료를 사용하였으며, 관측일 기준으로 5일전까지의 강우자료와 5일평균강우를 구분하여 사용하였다. LANDSAT 기반의 토양수분 이미지자료와 지점관측 토양수분을 이용하여 검·보정 이후 딥러닝 모형의 입력자료로 사용하였다. 입력자료는 30m × 30m 해상도로 Resample 하여 딥러닝 모형의 학습을 진행하였으며, 학습에 사용된 모형을 이용하여 Sentinel-1 기반의 고해상도(10m × 10m) 토양수분이미지를 산정하였다. 검증지점은 거창군 거창읍, 계룡시 두마면, 장수군 장수읍 및 무주군 무주읍 토양수분 관측지점을 선정하였다. 거창군 거창읍의 산정결과, LANDSAT 기반의 토양수분 이미지와 DNN 기반의 토양수분 이미지가 매우 유사하게 나타났으며, 모의값(DNN 기반 토양수분)이 실측값(LANDSAT 기반의 토양수분)을 잘 반영한 것(R: 0.875 ; RMSE: 0.013)으로 나타났다. 또한 학습모형을 토지피복이 유사한 지역에 적용하여 토양수분을 산정한 결과 검증지점 계룡시(R: 0.897 ; RMSE: 0.014), 장수군(R: 0.770 ; RMSE: 0.024) 및 무주군(R: 0.909 ; RMSE: 0.012)의 모의값이 실측값과 매우 유사한 것으로 나타났다. 이를 바탕으로 Seninel-1 SAR센서 이미지자료와 딥러닝기법을 연계한 고해상도 토양수분자료가 농업, 수문, 환경 등 다양한 분야에서 활용될 수 있을 것으로 판단된다.

  • PDF

Deep Learning Methods for Explainable Image Recognition (설명 가능한 이미지 인식을 위한 채널 주의 기반 딥러닝 방법)

  • BaiNa;Inwhee Joe
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.586-589
    • /
    • 2024
  • 본 실험 연구에서는 주의 메커니즘과 컨볼루션 신경망을 결합하여 모델을 개선하는 방법을 탐색하는 딥 러닝 기술을 소개한다. 이 기술은 지도 학습 방식을 위해 공개 데이터 세트의 쓰레기 분류 데이터를 사용하고, Grad-CAM 기술과 채널 주의 메커니즘 SE 를 적용하여 모델의 분류 의사 결정 과정을 더 잘 이해하기 위해 히트 맵을 생성한다. Grad-CAM 기술을 사용하여 히트 맵을 생성하면 분류 중에 모델이 집중하는 영역을 시각화할 수 있다. 이는 모델의 분류 결정을 설명하는 방법을 제공하여 다양한 이미지 카테고리에 대한 모델 결정의 기초를 더 잘 이해할 수 있다. 실험 결과는 전통적인 합성곱 신경망과 비교하여 제안한 방법이 쓰레기 분류 작업에서 더나은 성능을 달성한다는 것을 보여준다. 주의 메커니즘과 히트맵 해석을 결합함으로써 우리 모델은분류 정확도를 향상시킬 수 있다. 이는 실제 응용 분야의 이미지 분류 작업에 큰 의미가 있으며 해석 가능성에 대한 딥 러닝 연구 진행을 촉진하는 데 도움이 된다.

Text Augmentation Using Hierarchy-based Word Replacement

  • Kim, Museong;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • Recently, multi-modal deep learning techniques that combine heterogeneous data for deep learning analysis have been utilized a lot. In particular, studies on the synthesis of Text to Image that automatically generate images from text are being actively conducted. Deep learning for image synthesis requires a vast amount of data consisting of pairs of images and text describing the image. Therefore, various data augmentation techniques have been devised to generate a large amount of data from small data. A number of text augmentation techniques based on synonym replacement have been proposed so far. However, these techniques have a common limitation in that there is a possibility of generating a incorrect text from the content of an image when replacing the synonym for a noun word. In this study, we propose a text augmentation method to replace words using word hierarchy information for noun words. Additionally, we performed experiments using MSCOCO data in order to evaluate the performance of the proposed methodology.

Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems (블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축)

  • Jang, Jiwon;An, Hyojoon;Lee, Jong-Han;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.80-86
    • /
    • 2019
  • As computer performance improves, research using deep learning are being actively carried out in various fields. Recently, deep learning technology has been applying to the safety evaluation for structures. In particular, the internal blades of a turbine structure requires experienced experts and considerable time to detect surface damages because of the difficulty of separation of the blades from the structure and the dark environmental condition. This study proposes a Faster R-CNN deep learning model that can detect surface damages on the internal blades, which is one of the primary elements of the turbine structure. The deep learning model was trained using image data with dent and punch damages. The image data was also expanded using image filtering and image data generator techniques. As a result, the deep learning model showed 96.1% accuracy, 95.3% recall, and 96% precision. The value of the recall means that the proposed deep learning model could not detect the blade damages for 4.7%. The performance of the proposed damage detection system can be further improved by collecting and extending damage images in various environments, and finally it can be applicable for turbine engine maintenance.

Strawberry Pests and Diseases Detection Technique Optimized for Symptoms Using Deep Learning Algorithm (딥러닝을 이용한 병징에 최적화된 딸기 병충해 검출 기법)

  • Choi, Young-Woo;Kim, Na-eun;Paudel, Bhola;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.255-260
    • /
    • 2022
  • This study aimed to develop a service model that uses a deep learning algorithm for detecting diseases and pests in strawberries through image data. In addition, the pest detection performance of deep learning models was further improved by proposing segmented image data sets specialized in disease and pest symptoms. The CNN-based YOLO deep learning model was selected to enhance the existing R-CNN-based model's slow learning speed and inference speed. A general image data set and a proposed segmented image dataset was prepared to train the pest and disease detection model. When the deep learning model was trained with the general training data set, the pest detection rate was 81.35%, and the pest detection reliability was 73.35%. On the other hand, when the deep learning model was trained with the segmented image dataset, the pest detection rate increased to 91.93%, and detection reliability was increased to 83.41%. This study concludes with the possibility of improving the performance of the deep learning model by using a segmented image dataset instead of a general image dataset.

Design and Implementation of Deep-Learning-Based Image Tag for Semantic Image Annotation in Mobile Environment (모바일 환경에서 딥러닝을 활용한 의미기반 이미지 어노테이션을 위한 이미지 태그 설계 및 구현)

  • Shin, YoonMi;Ahn, Jinhyun;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.895-897
    • /
    • 2019
  • 모바일의 기술 발전과 소셜미디어 사용의 증가로 수없이 많은 멀티미디어 콘텐츠들이 생성되고 있다. 이러한 많은 양의 콘텐츠 중에서 사용자가 원하는 이미지를 효율적으로 찾기 위해 의미 기반 이미지 검색을 이용한다. 이 검색 기법은 이미지에 의미 있는 정보들을 이용하여 사용자가 찾고 자하는 이미지를 정확하게 찾을 수 있다. 본 연구에서는 모바일 환경에서 이미지가 가질 수 있는 의미적 정보를 어노테이션 하고 이와 더불어 모바일에 있는 이미지에 풍성한 어노테이션을 위해 딥러닝 기술을 이용하여 다양한 태그들을 자동 생성하도록 구현하였다. 이렇게 생성된 어노테이션 정보들은 의미적 기반 태그를 통해 RDF 트리플로 확장된다. SPARQL 질의어를 이용하여 의미 기반 이미지 검색을 할 수 있다.

A Study on Image Classification using Deep Learning-Based Transfer Learning (딥 러닝 기반의 전이 학습을 이용한 이미지 분류에 관한 연구)

  • Jung-Hee Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.413-420
    • /
    • 2023
  • For a long time, researchers have presented excellent results in the field of image retrieval due to many studies on CBIR. However, there is still a semantic gap between these search results for images and human perception. It is still a difficult problem to classify images with a level of human perception using a small number of images. Therefore, this paper proposes an image classification model using deep learning-based transfer learning to minimize the semantic gap between images of people and search systems in image retrieval. As a result of the experiment, the loss rate of the learning model was 0.2451% and the accuracy was 0.8922%. The implementation of the proposed image classification method was able to achieve the desired goal. And in deep learning, it was confirmed that the CNN's transfer learning model method was effective in creating an image database by adding new data.