본 논문에서는 이미지 검색을 위해 가장 기본적인 요소인 이미지 색상에 따른 칼라 분포정보를 이용하고 다양한 요소에 따라 가중치를 부여한 칼라기반의 검색 기술자를 제안하였고 실험적 평가를 통하여 제안 기술자의 성능을 평가하였다. 칼라 히스토그램을 통한 이미지 검색 기술자를 설계하는데 있어 칼라모델은 HSV, 웨이블릿 변환 필터는 D9/7, 웨이블릿 분해는 2 레벨을 적용하였을 때 가장 좋은 검색효율성을 보였다.
Proceedings of the Korean Information Science Society Conference
/
1998.10b
/
pp.250-252
/
1998
내용기반 이미지 검색(Content-based image retrieval)에서 컬러 특징을 표현하기 위해 컬러 히스토그램이 많이 이용되고 있다. 하지만 히스토그램의 고차원적인 성질 때문에 색인구조를 사용한 효율적인 검색이 어렵고, 유사도 계산 단계에서 비용이 많이 든다. 이점을 개선하기 위해서 이미지의 컬러 정보 손실을 최소화하면서 히스토그램의 차원을 낮추는 컬러 클러스터링 방법이 제안되었다. 이 논문은 이미지 검색의 응용 분야에 따른 이미지 데이터의 컬러 분포 특성을 이용한 컬러 클러스터링 방법을 제안한다. 컬러 분포를 가중치로 이용한 계층적 컬러 클러스터링 방법에 대해 알아보고, 두 단계 컬러 히스토그램을 이용한 이미지 검색에 적용하여 컬러 정보 유지 능력을 실험해 본다.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.3
/
pp.413-420
/
2023
For a long time, researchers have presented excellent results in the field of image retrieval due to many studies on CBIR. However, there is still a semantic gap between these search results for images and human perception. It is still a difficult problem to classify images with a level of human perception using a small number of images. Therefore, this paper proposes an image classification model using deep learning-based transfer learning to minimize the semantic gap between images of people and search systems in image retrieval. As a result of the experiment, the loss rate of the learning model was 0.2451% and the accuracy was 0.8922%. The implementation of the proposed image classification method was able to achieve the desired goal. And in deep learning, it was confirmed that the CNN's transfer learning model method was effective in creating an image database by adding new data.
대부분의 이미지 검색은 질의 키워드를 이용하여 이루어지기 때문에 웹으로부터 수집한 이미지에는 미리 주제와 연관된 적절한 색인어를 부여하는 것이 필요하다. 웹 문서의 키워드를 이용하는 방법은 이미지와 연관성이 높은 것으로 간주되는 주변 키워드에 대해 각각의 연관도를 계산하여 색인어를 선정하는 방법이다. 본 논문에서는 이미지 주변의 키워드를 이용하여 이미지를 인덱싱한 후 유저 피드백을 통해 정확도를 높이는 웹 이미지 검색 모델을 제안한다.
최근, Flickr, YouTube 와 같은 사용자 참여형 미디어 공유 및 검색 사이트가 폭발적으로 증가하면서, 이를 멀티미디어 정보 검색 서비스에 효과적으로 활용하기 위한 다양한 연구들이 시도되고 있다. 특히, 이미지에 할당되어 있는 태그를 이용하여 이미지를 효과적으로 검색하기 위한 연구가 활발히 진행 중이다. 그러나 사용자들에 의해 제공되는 소셜 이미지들은 매우 다양한 범위와 주제를 가지고 있기 때문에, 소셜 이미지들의 분류 및 태그 할당을 위한 트레이닝 집합의 획득이 쉽지 않다는 한계점을 가지고 있다. 본 논문에서는 데이터 군집화를 위한 클러스터링 알고리즘들 중 K-Means, K-Medoids, Affinity Propagation 을 활용하여 소셜 이미지 집합으로부터 트레이닝 집합을 획득하기 위한 방법들을 살펴 본다. 또한, 각 알고리즘으로부터 획득한 트레이닝 집합을 이용하여 소셜 이미지를 분류한 결과를 비교 분석한다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.139-141
/
2005
최근 인터넷의 발달에 따라 XML 문서의 사용과 각종 영상정보의 양이 크게 증가되었다. 이에 따라 XML 문서를 관리하기 위한 XML 데이터베이스의 필요성과 메타데이터 표준화에 대한 중요성이 증가되고 있다. XML 데이터베이스는 XML 문서의 특성을 고려하여 그 특성을 효율적으로 지원할 수 있다. 또한 국내에서는 교육정보분야 메타데이터 표준인 KEM 2.0이 제정 되었고 국외에서는 멀티미디어 데이터에 대한 표준으로 MPEG-7이 제정이 되었다. 이에 따라 본 논문에서는 MPEG-7을 기반으로 KEM 2.0을 이용한 영상정보 XML 스키마를 생성하고 이를 이용한 영상정보 검색시스템을 XML 데이터베이스 기반으로 설계하고자 한다. 본 논문에서 설계하는 XML 데이터베이스 기반의 영상정보 검색시스템은 XML 문서에 대한 빠른 저장과 검색이 가능할 것이다. 또한 검색 기능에 있어서는 키워드 기반의 의미기반 검색과 유사 이미지를 통한 내용기반 검색, 그리고 이를 내용기반과 의미기반을 통합한 검색 기능을 제공할 것이며 XML 문서에 대한 강력한 질의 수단인 XQuery 질의를 포함하게 될 것이다.
Proceedings of the Korea Multimedia Society Conference
/
2001.06a
/
pp.66-69
/
2001
최근 인터넷의 발전으로 방대한 정보가 존재함에 따라 이들 정보들을 통합 관리할 필요성이 증대하고, 웹 검색 시스템의 서비스가 텍스트뿐만 아니라 이미지나 사운드 데이터와 같은 멀티미디어 정보까지 보편화되어 검색의 결과로 서비스를 제공하고 있다. 기존의 검색결과를 보면 멀티미디어 데이터에 대한 검색결과는 부가적 정보로서 서비스를 제공하기 때문에 검색 결과에 대해서도 정확한 결과에 대한 서비스를 제공하지 못하고 있다. 본 논문에서는 XML기반에서 멀티미디어 데이터 소스에 대한 메타데이터를 DTD로 설계하여 내용기반 질의를 효과적으로 분산처리 할 수 있도록 Mediator를 설계한다.
Aggregating local features in a single vector is a fundamental problem in an image search. In this process, the image search process can be speeded up if binary features which are extracted almost two order of magnitude faster than gradient-based features are utilized. However, in order to utilize the binary features in an image search, it is necessary to study the techniques for clustering binary features to generate binary visual words. This investigation is necessary because traditional clustering techniques for gradient-based features are not compatible with binary features. To this end, this paper studies the techniques for clustering binary features for the purpose of generating binary visual words. Through experiments, we analyze the trade-off between the accuracy and computational efficiency of an image search using binary features, and we then compare the proposed techniques. This research is expected to be applied to mobile applications, real-time applications, and web scale applications that require a fast image search.
In this paper, we presents a method of retrieving 24 bpp RGB images based on color-spatial features. For each image, it is subdivided into regions by using similarity of color after converting RGB color space to CIE L*u*v* color space that is perceptually uniform. Our segmentation algorithm constrains the size of region because a small region is discardable and a large region is difficult to extract spatial feature. For each region, averaging color and center of region are extracted to construct color-spatial features. During the image retrieval process, the color and spatial features of query are compared with those of the database images using our similarity measure to determine the set of candidate images to be retrieved. We implement a content-based color image retrieval system using the proposed method. The system is able to retrieve images by user graphic or example image query. Experimental results show that Recall/Precision is 0.80/0.84.
최근 멀티미디어 데이터, 특히 UCC를 중심으로 동영상 데이터가 급증하고 있다. 그러나 현재 대부분의 검색 시스템은 키워드 기반의 동영상 데이터 검색만을 지원하고 있으며, 따라서 사용자가 원하는 동영상 데이터를 효율적으로 검색하지 못하는 실정이다. 동영상 데이터에 대한 효율적인 검색을 지원하기 위해서는, 동영상의 내용(이미지, 색, 모양 등)을 고차원의 특징 벡터 데이터로 표현하여 유사한 동영상을 검색하는 내용-기반 검색이 요구된다. 본 논문에서는 내용-기반 검색을 위해 제안된 기존의 고차원 벡터 데이터 색인 구조를 실험을 통하여 성능을 비교하며, 이를 통해 동영상 내용-기반 검색에 가장 효율적인 색인 기법을 제시한다. 아울러 보다 효율적인 내용-기반 검색을 위한, 근사 k-NN 질의 탐색 기법의 유용성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.