• 제목/요약/키워드: 이미지 기반 검색

검색결과 526건 처리시간 0.034초

내용 기반 이미지 검색에서 효율적인 색상-모양 표현을 위한 복소 색상 모델 (Complex Color Model for Efficient Representation of Color-Shape in Content-based Image Retrieval)

  • 최민석
    • 디지털융복합연구
    • /
    • 제15권4호
    • /
    • pp.267-273
    • /
    • 2017
  • 각종 디지털 기기와 통신 기술의 발전으로 다양한 멀티미디어 콘텐츠의 생산과 유통이 폭발적으로 증가하고 있다. 이미지와 동영상 등의 멀티미디어 데이터의 검색을 위해서는 기존의 문자 위주의 검색과는 다른 접근 방식이 필요하다. 이미지의 여러 가지 물리적인 특징들을 정량화 하여 분석하고 이를 비교하여 유사한 이미지를 검색하는 내용기반 이미지 검색에서 색상과 모양은 주요 물리적 특징들이다. 지금까지는 색상과 모양을 서로 독립적인 특징으로 분리하여 이용하였지만, 인지적 관점에서 두 특징은 밀접한 관련이 있다. 본 논문에서는 색상과 모양 특징을 동시에 표현하기 위하여 3차원 색상 정보를 2차원 복소수 형식으로 표현하는 복소 색상 모델을 이용하여 색상의 공간적 분포 모양을 기술하는 방법을 제안한다. 복소 이미지를 주파수 변환한 후 저주파 영역의 소수의 계수만으로 복원하는 실험을 통하여 제안된 방법이 색상의 공간적 분포 모양을 효율적으로 표현할 수 있음을 보였다.

멀티미디어 검색 시스템의 설계 및 구현 (Design and Implementation of Multimedia Retrieval a System)

  • 노승민;황인준
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권5호
    • /
    • pp.494-506
    • /
    • 2003
  • 최근 들어 멀티미디어 정보의 사용량이 증가하면서 멀티미디어 데이타베이스로부터 오디오나 비디오, 이미지 둥 다양한 형태의 멀티미디어 컨텐츠를 효과적으로 찾아내는 멀티미디어 검색 시스템의 필요성이 증가하였다. 본 논문에서는 기존의 주석 및 내용 기반 검색 기법을 상호 보완하고 효과적인 멀티미디어 데이타 검색을 지원하는 XML 기반의 새로운 검색 기법과 이를 위한 데이타 모델을 제시한다. 이미지 및 비디오에 대한 데이타 모델은 MPEG-7 표준에 정의되어 있는 멀티미디어 기술 구조(MDS)와 기술 정의 언어인 XML Schema를 사용하여 멀티미디어 데이타의 특성 및 계층구조를 표현하였고 오디오 데이타의 경우 음향 특징들로부터 추출된 음높이를 분석하여 UDR 스트링으로 변환하고 자주 검색된 멜로디의 관리를 통해 검색 성능을 향상하였다. 본 논문에서는 제안된 모델을 기반으로 검색 시스템을 구현하였으며 다양한 실험을 통하여 성능 평가를 하였다.

다중점 적합성 피드백방법을 이용한 영역기반 이미지 유사성 검색 (Region Based Image Similarity Search using Multi-point Relevance Feedback)

  • 김덕환;이주홍;송재원
    • 정보처리학회논문지D
    • /
    • 제13D권7호
    • /
    • pp.857-866
    • /
    • 2006
  • 질의 이미지의 시각적 특징이 사용자의 상위 수준 개념을 잘 표현하지 못하기 때문에 이미지 검색 시스템의 성능은 보통 매우 낮다. 의미적으로 유사한 이미지들이 매우 다른 시각적 특징을 보일 수도 있으며 따라서 여러 개의 군집에 분산될 수 있다. 본 논문에서는 영역기반 이미지 검색과 군집-합병을 이용한 새로운 적합성 피드백 방법을 결합한 내용기반 이미지 검색 방법을 제안한다. 주요 목표는 의미적 차이를 줄이기 위해 의미적으로 관련된 군집들을 찾는 것이다. 제안된 방법은 영역기반 군집 과정과 군집-합병 과정으로 이루어진다. 적합한 이미지들의 모든 분할된 영역들을 의미적으로 관련된 계층적인 군집으로 구성한다. 잠재된 군집의 개수를 결정하고 근접한 군집들을 합병한 후 최종 군집의 대표점들로 다중 질의를 표현한다. 군집-합병 과정에서 군집의 개수를 찾고 고차원에서 특이점 문제를 해결하기 위하여 호텔링의 $T^2$ 대신에 v개의 주성분을 이용하는 $T_v^2$를 적용하였으며 $T^2$의 성능과 $T_v^2$의 성능의 차이가 없음을 보인다. 실험 결과는 제안된 방법이 내용기반 이미지 검색 시스템의 성능을 개선하는 데 효율적임을 보여준다.

내용기반 검색을 위한 SOMk-NN탐색 알고리즘 (SOMk-NN Search Algorithm for Content-Based Retrieval)

  • 오군석;김판구
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권5호
    • /
    • pp.358-366
    • /
    • 2002
  • 특징정보를 기반으로 한 유사 이미지 검색은 이미지 데이타베이스에 있어서 중요한 과제의 하나이다. 이미지 데이타의 특징정보는 각 이미지를 식별하는데 유용한 정보이다. 본 논문에서는 자기 조직화 맵 기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기 조직화 맵은 고차원 특징벡터를 2차원 공간에 맵핑하여 위상특징 맵을 생성한다. 위상특징 맵은 입력 데이타의 특징공간과 상호관계(유사성)를 가지고 있으며, 인접노드에 서로 유사한 특징벡터가 클러스터링된다. 그러므로 위상특징 맵상의 각 노드에는 노드 벡터와 각 노드벡터에 가장 가까운 유사 이미지가 분류된다. 이러한 자기 조직화 맵에 의한 유사 이미지 분류결과에 대하여 k-NV 탐색을 구현하기 위하여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제 이미지로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사 이미지 검색에 유효한 견과를 얻을 수 있었다.

윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 (SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection)

  • 유승훈;김덕환;이석룡;정진완;김상희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권4호
    • /
    • pp.345-355
    • /
    • 2008
  • 다양한 형태 특징 추출 방법 중의 하나인 SIFT는 물체 인식, 모션 추적, 3차원 이미지 재구성과 같은 컴퓨터 비전 응용 분야에서 많이 사용된다. 하지만 SIFT 방법은 많은 특징점들과 고차원의 특징 벡터를 사용하기 때문에 이미지 유사성 검색에 그대로 적용하기에는 많은 어려움이 있다. 본 논문에서는 윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 기법을 제안한다. 제안한 방법은 윤곽선 이미지 피라미드를 이용하여 이미지의 밝기 변화, 크기, 회전등에 불변한 특징을 추출하고, 타원 형태의 허프변환을 이용한 관심영역 검출을 통해 불필요한 많은 특징점들을 제거하여 검색성능을 높인다. 실험 결과에서 제안한 방법의 이미지 검색 성능이 기존의 SIFT의 방법에 비해 평균 재현율이 약 20%정도 좋은 성능을 보이고 있다.

공간관계 표현 기반 RDF 메타데이터를 이용한 의미적 이미지 검색 (Semantic Image Retrieval Using RDF Metadata Based on the Representation of Spatial Relationships)

  • 황명권;공현장;김판구
    • 정보처리학회논문지B
    • /
    • 제11B권5호
    • /
    • pp.573-580
    • /
    • 2004
  • 현대 과학 기술의 발달로 인해, 사람들은 필요한 정보들을 웹에 보관하고 관리한다. 특히, 이미지 데이터는 복잡한 데이터를 한눈에 알아보기 쉽게 표현할 수 있기 때문에 가장 많이 사용하고 있다. 또한 스캔(scan) 기술의 발달, 핸드폰 카메라와 디지털 카메라가 보편화 되면서 누구나 손쉽게 이미지를 제작하여 웹상에 게시할 수 있게 되었다. 하지만 이렇게 많은 이미지 데이터의 생성 및 제공에 반해, 웹상에 있는 이미지를 검색하는 시스템에는 극히 원시적인 방법(text-based)을 이용하고 있는 것이 추세이다. 이에 본 논문에서 우리는 ‘공간 관계 표현 기반 RBF 메타데이터를 이용한 의미적 이미지 검색’을 제안한다. 이는 이미지에 표현되어 있는 개체들 사이의 공간적인 관계의 표현을 위하여 새로운 공간관계 어휘들을 정의하고, RDF 메타데이터에 이를 의미적으로 표현함으로써, 이미지 검색에서 더욱 정확한 응답을 제공하고, 궁극적으로 의미적 이미지 검색 시스템(Semantical Image Retrieval System)을 구축하고자 한다.

사분트리 분할 인덱스를 이용한 컬러이미지 검색 (Color Image Retrieval using Quad-tree Segmentation Index)

  • 오석영;홍성용;나연묵
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.175-177
    • /
    • 2004
  • 최근, 이미지 검색기법에서는 객체추출 방법이나 관심영역 추출방법에 관한 연구가 활발히 이루어지고 있다. 그러나, 컬러 이미지의 경우 색상을 고려한 관심영역 특징추출 방법이나 인덱스 기법은 많이 연구되지 못하고 있다. 따라서, 본 논문에서는 컬러 이미지의 색상을 기반으로 하는 사분트리 분할 인덱스 기법을 제안한다. 사분트리 분할 인덱스 구조는 컬러 이미지의 공간 영역을 계층적인 영역으로 분할하여 각 공간 영역의 평균 색상 갓을 데이터베이스에 저장한다 저장되어진 각 영역의 평균 색상은 검색의 효율성을 높이기 위해 사분트리 인스턴스(Quad-tree distance)를 퍼지 값으로 계산하여 인덱스를 생성한다. 생성된 사분트리 분할 인덱스는 컬러 이미지의 관심영역(Region of Interest)의 색상을 검색할 때 유용하게 사용되며. 검색속도의 향상에 도움을 준다.

  • PDF

객체 MBR을 이용한 이미지 내용 기반 색상정보 및 모양정보 추출 기법 (Image color and shape feature extraction technique using object MBR)

  • 한정운;김병곤;이재호;정헌석;임해철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (1)
    • /
    • pp.136-138
    • /
    • 2000
  • 대용량의 멀티미디어 자료를 기반으로 하는 산업의 급성장은 이에 적합한 효율적인 저장 및 검색시스템을 요구하고 있다. 그러나, 멀티미디어 자료의 고차원적인 특성은 저장과 검색에 있어 성능을 저하시키는 문제점으로 지적되고 있다. 이를 해결하기 위하여 멀티미디어 자료로부터 저차원의 특성을 추출하여 내용기반 검색을 수행하는 연구가 진행되어오고 있다. 본 논문에서는 이미지내의 객체 MBR(Minimum Bounding Rectangle)을 이용하여 저차원의 색상정보와 모양정보를 추출하는 기법을 제안한다. 히스토그램정보는 이미지의 객체를 포함하는 MBR을 이용하여 9개의 타일로 균등분할하여 추출하며, 모양정보는 객체 MBR의 중심으로부터 16방향의 스캐닝을 통해 16개의 점으로 구성된 모양정보를 추출한다. 실험을 통하여 추출된 정보의 검색성능을 평가하였다.

  • PDF

자동 주석 갱신 및 멀티 분할 색상 히스토그램 기법을 이용한 의미기반 비디오 검색 시스템 (A Semantic-based Video Retrieval System using Method of Automatic Annotation Update and Multi-Partition Color Histogram)

  • 이광형;전문석
    • 한국통신학회논문지
    • /
    • 제29권8C호
    • /
    • pp.1133-1141
    • /
    • 2004
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 설계하고 구현한 시스템은 실험을 통한 성능평가에서 90% 이상의 높은 정확도를 보였다.

불확정적으로 색인된 이미지 데이터베이스를 개념 기반으로 검색하기 위한 자료형 (A Data Type for Concept-Based Retrieval against Image Databases Indefinitely Indexed)

  • 양재동
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권1호
    • /
    • pp.27-33
    • /
    • 2002
  • 트리플 이미지 색인 기법에는 두 가지 문제점이 있는 데 그 하나는 개념기반 이미지 검색을 지원하지 않는다는 것이고 다른 하나는 이접 레이블링(labeling)이 허용되지 않는다는 점이다. 이 문제점들을 해결하기 위해서 본 논문에서는 불확정적 퍼지 트리플(I-퍼지 트리플)이라는 새로운 이미지 색인 자료 형을 제안한다. I-퍼지 트리플에 의한 이미지 색인 방식에서는 이접 레이블링을 허용하기 때문에, 이미지 내 객체들이 꼭 확정적으로 인식될 필요가 없으며, 또 확정적으로 인식되지 않는 이미지들에 대해서도 개념 기반 이미지 정합이 가능하다. 본 논문에서 제안하는 이접 레이블링은 확장된 폐 세계 가정에 기반을 두고 있으며, 기념 기반 이미지 검색은 퍼지 술어에 의한 정합에 근거를 두고 있다. 본 논문에서는 또한 이접 레이블링에 의해 불확정적으로 색인된 이미지 데이터베이스로부터 원하는 답을 $\alpha$$\in$[0,1]확정도로 구해내는 개념기반 질의 평가 방식도 제안한다.