• Title/Summary/Keyword: 이미지 기반 검색

Search Result 526, Processing Time 0.028 seconds

Scene Modeling for Content-based Retrieval in 3 Dimensional Image Databases (3차원 이미지 데이터베이스에서 내용기반 검색을 지원하는 Scene 모델링)

  • 황종하;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.299-301
    • /
    • 1999
  • 최근 데이터베이스 시스템 분야에서는 각종 비쥬얼 시뮬레이터, 가상현실, 게임 등과 같은 응용이 등장함에 따라서 3차원 이미지 데이터의 중요성이 높아지게 되었고 이에 대한 검색 및 관리가 필요하게 되었다. 그래서 본 논문에서는 3차원 이미지 데이터베이스에서 내용기반 검색을 지원하기 위한 모델링 방법과 3차원 이미지 데이터베이스 시스템의 구조를 제시한다. 이를 위한 요소기술로서 3차원 객체의 모델링 기법과 객체간이 공간관계 표현 기법이 제시되었다.

  • PDF

Assembly Part Image-based 3D Shape Retrieval using Attentional View Pooling (Attentional View Pooling을 이용한 조립 부품 이미지 기반 3 차원 물체 검색)

  • Lee, Eun Ji;Kang, Isaac;Kim, Min Woo;Park, Seon Ji;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.72-75
    • /
    • 2020
  • 조립 부품 이미지에 해당하는 3D CAD 모델 매칭 기술은 최근 로봇 조립 기술의 발전으로 필요성이 대두되고 있다. 이미지 기반 3 차원 모델 매칭 연구는 진행되어 왔지만 가구 부품 이미지와는 특성이 다른 RGB[5] 이미지나 스케치 이미지를 다루는[1] 접근들이었다. 딥러닝을 사용하는 스케치 이미지 기반 3 차원 물제 검색 연구에서는 대부분 3 차원 이미지를 다각도에서 렌더링한 view 이미지들에서 feature를 추출하고 pooling 하여 하나의 feature를 출력한다. 그러나 기존의 view pooling 방식은 단순한 평균 방식으로, 부품 이미지에 따른 view를 반영하기에는 한계가 있었다. 따라서 본 논문에서는 조립 부품 이미지 기반 3 차원 물체 검색을 위해 query 부품 이미지에 따라 다른 view 이미지에 집중할 수 있는 방식의 attentional view pooling을 제안한다. 또한 조립 부품 데이터의 특성 상 class 당 CAD 모델이 하나인 상황이므로 학습 데이터가 터무니없이 부족하여 이를 해결하기 위한 학습 데이터 증강 방법을 제안한다. 실험은 의자 부품 11가지에 대해 진행하였고 이를 통해 제안하는 방식의 성능을 입증하였다.

  • PDF

Design of Ontology-based Interactive Image Annotation System using Social Image Database (소셜 이미지 데이터베이스를 이용한 온툴로지 기반 대화형 이미지 어노테이션 시스템의 설계)

  • Jeong, Jin-Woo;Lee, Dong-Ho
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.300-303
    • /
    • 2011
  • 이미지 어노테이션 기법은 효과적인 이마지 공유 및 검색을 위하여 활발하게 연구되고 있는 연구분야 중 하나로서, 최근에는 사용자들에 의하여 제작되는 방대한 양의 이미지 데이터 및 태그 정보를 제공하는 Flick와 같은 소셜 이마지 데이터베이스를 활용함으로써 이미지 어노테이션 및 이미지 검색을 효과적으로 수행하고자 하는 다양한 연구들이 시도되고 있다. 본 논문에서는 이미지 지식정보의 관리 및 공유를 위한 온톨로지와 소셜 이마지 데이터베이스를 활용하여 이미지 어노테이션을 수행하기 위한 시스템을 제안한다. 본 논문에서 제안하는 시스템은 소셜 이미지 데이터베이스를 활용하여 의미 있는 개념들을 이미지 어노테이션에 활용하며, 지식 관리 체계인 온툴로지를 이용하여 이미지 데이터베이스 내의 이미지 및 개념간에 존재하는 의미적 관련성을 기반으로 보다 효율적인 이미지 검색을 수행하고자 한다.

A Dual Graph Data Model for the Representation of Image Information (이미지 정보를 표현하기 위한 이중 그래프 데이터 모델)

  • 박미화;엄기현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.262-264
    • /
    • 1998
  • 이미지 데이터베이스를 구성하여 사용자가 원하는 정보를 추출하는 의미 기반 검색을 지원하기 위해서는 이미지 내용에 관한 의미 정보들이 데이터 모델로 구조화되어야 한다. 본 논문에서는 다양한 정적 이미지 내용 정보들을 분류하고 그를 체계적으로 표현하기 위한 이미지 데이터 모델을 소개한다. 특히 본 이미지 데이터 모델은 그래프 이론을 이용하여 이미지내에 포함된 시각 객체들의 내용 정보를 표현하고 객체들간의 의미 관계를 정의한다. 이는 이미지 내용에 대한 정확한 정보 표현과 질의에 대한 이미지 검색 효율을 향상시킬 수 있으며 객체들간의 의미 관계를 이용한 질의와 검색을 가능하게 한다.

Semantic Image Retrieval Using Color Distribution and Similarity Measurement in WordNet (컬러 분포와 WordNet상의 유사도 측정을 이용한 의미적 이미지 검색)

  • Choi, Jun-Ho;Cho, Mi-Young;Kim, Pan-Koo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.509-516
    • /
    • 2004
  • Semantic interpretation of image is incomplete without some mechanism for understanding semantic content that is not directly visible. For this reason, human assisted content-annotation through natural language is an attachment of textual description to image. However, keyword-based retrieval is in the level of syntactic pattern matching. In other words, dissimilarity computation among terms is usually done by using string matching not concept matching. In this paper, we propose a method for computerized semantic similarity calculation In WordNet space. We consider the edge, depth, link type and density as well as existence of common ancestors. Also, we have introduced method that applied similarity measurement on semantic image retrieval. To combine wi#h the low level features, we use the spatial color distribution model. When tested on a image set of Microsoft's 'Design Gallery Line', proposed method outperforms other approach.

Image-based Image Retrieval System Using Duplicated Point of PCA-SIFT (PCA-SIFT의 차원 중복점을 이용한 이미지 기반 이미지 검색 시스템)

  • Choi, GiRyong;Jung, Hye-Wuk;Lee, Jee-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.275-279
    • /
    • 2013
  • Recently, as multimedia information becomes popular, there are many studies to retrieve images based on images in the web. However, it is hard to find the matching images which users want to find because of various patterns in images. In this paper, we suggest an efficient images retrieval system based on images for finding products in internet shopping malls. We extract features for image retrieval by using SIFT (Scale Invariant Feature Transform) algorithm, repeat keypoint matching in various dimension by using PCA-SIFT, and find the image which users search for by combining them. To verify efficiency of the proposed method, we compare the performance of our approach with that of SIFT and PCA-SIFT by using images with various patterns. We verify that the proposed method shows the best distinction in the case that product labels are not included in images.

Content-Based Image Retrieval Using Edge Histogram Analysis Technique (내용 기반 이미지 검색을 위한 에지 히스토그램 분석기법)

  • Park Jong-Cheon;Jun Byoung-Min
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.377-381
    • /
    • 2005
  • 본 연구에서는 내용기반 이미지 검색을 위한 에지 히스토그램 분석기법을 제안하여 20종류의 다양한 에지에 대한 에지 히스토그램을 분석한다. 전체영역에 대한 수평방향 에지 히스토그램을 분석하고, 전체 영역을 몇 개의 부분영역으로 분할하고 각 부분영역에 대한 에지 히스토그램을 수행하여 영역별 특징을 추출한다. 그리고 각각의 수평방향 에지 히스토그램에서 20종류의 에지 성분의 발생 패턴을 추출한다. 본 연구에서 제안한 에지 히스토그램 분석기법은 일반적으로 사용되는 5종류의 에지 성분을 사용한 방법보다 다양한 형태의 에지를 분석을 가능하게 함으로서 내용 기반 이미지 검색을 수행하는데 있어서 다양한 에지 특징을 추출함으로서 내용 기반 이미지 검색을 효과적으로 할 수 있었다.

  • PDF

Image Retrieval using Contents and Location of Multiple Region-of-Interest (다중 관심영역의 내용과 위치를 이용한 이미지 검색)

  • Lee, Jong-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.355-358
    • /
    • 2011
  • 본 논문에서는 이미지에서 사용자가 관심을 갖는 영역(ROI)의 내용을 나타내는 특성값과 영역의 위치를 함께 고려하여 이미지를 검색하는 방법을 제안한다. 제안한 방법은 검색 대상 이미지를 일정 크기의 블록으로 구분한 후 사용자가 선택한 다중 ROI와 가장 근접하는 특성을 가진 블록을 선택한다. 블록의 특성값은 MPEG-7의 도미넌트 컬러 기술자를 사용한다. 사용자가 선택한 블록의 특성값과 함께 블록의 위치를 측정한 후, 검색 대상 이미지의 블록들의 특성값 및 위치와 비교하여 유사도를 측정한다. 본 논문에서는 실험결과 제안한 방법이 전역 이미지 검색이나 동일한 위치의 블록만 비교하는 경우보다 다중 ROI의 내용과 위치를 함께 고려하는 방법이 다른 방법에 비해 우수한 성능을 나타냈다.

  • PDF

A Multimedia Database System using Indexing Agent (인덱싱 에이전트를 이용한 멀티미디어 데이터베이스 시스템)

  • Lee, Kwang-Hyoung;Lee, Chang-Soo;Lee, Jong-Hee;Oh, Hae-Seok
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.57-60
    • /
    • 2003
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템은 설계한다.

  • PDF

Two-phase Content-based Image Retrieval Using the Clustering of Feature Vector (특징벡터의 끌러스터링 기법을 통한 2단계 내용기반 이미지검색 시스템)

  • 조정원;최병욱
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.3
    • /
    • pp.171-180
    • /
    • 2003
  • A content-based image retrieval(CBIR) system builds the image database using low-level features such as color, shape and texture and provides similar images that user wants to retrieve when the retrieval request occurs. What the user is interest in is a response time in consideration of the building time to build the index database and the response time to obtain the retrieval results from the query image. In a content-based image retrieval system, the similarity computing time comparing a query with images in database takes the most time in whole response time. In this paper, we propose the two-phase search method with the clustering technique of feature vector in order to minimize the similarity computing time. Experimental results show that this two-phase search method is 2-times faster than the conventional full-search method using original features of ail images in image database, while maintaining the same retrieval relevance as the conventional full-search method. And the proposed method is more effective as the number of images increases.