• Title/Summary/Keyword: 이미지 검출방법

Search Result 534, Processing Time 0.024 seconds

A Study on Synthesizing Training Data for One-stage Object Detector (단일 단계 검출 방법을 위한 이미지 합성기반 학습 데이터 증강에 관한 연구)

  • Lee, Seon-Gyeong;Jeong, Chi Yoon;Moon, KyeongDeok;Kim, Chae-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.446-450
    • /
    • 2020
  • 딥러닝 기반의 영상 분석 방법들은 많은 양의 학습 데이터가 필요하며, 학습 데이터 구축에는 많은 시간과 노력이 소요된다. 특히 객체 검출 분야의 경우 영상 내 객체의 위치, 크기, 범주 등의 정보가 모두 필요하여 학습 데이터 구축에 더 많은 어려움이 있으며, 이를 해결하기 위해 최근 이미지 합성기반 데이터 증강에 관한 연구가 활발히 진행되고 있다. 이미지 합성기반 데이터 증강 방법은 배경 영상에 객체를 합성할 때 객체와 배경 영상이 접한 영역에서 아티팩트(Artifact)가 발생하며, 이는 객체 검출 모델이 아티팩트를 객체의 특징으로 모델링하여 검출 성능이 저하되는 원인이 된다. 이러한 문제를 해결하기 위하여 본 논문에서는 양방향 필터 기반의 이미지 합성 방법을 제안하고, 단일 단계 검출의 대표적인 방법인 RetinaNet을 이용하여 이미지 합성기반 데이터 증강 방법의 성능을 분석하였다. 공개 데이터셋에 대한 실험 결과 본 논문에서 사용한 단일 검출 방법 및 데이터 증강 기법을 사용하면 더 적은 양의 증강 데이터로 기존 방법과 동일한 성능을 보여주는 것을 확인하였다.

Character Region Detection using Edge Features of Character and Character String in Signboard Image (문자 및 문자열의 에지 특징을 이용한 표시판 이미지에서 문자영역 검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.212-214
    • /
    • 2008
  • 자연이미지에 포함된 안내 표시판은 많은 유용한 정보를 포함하고 있으므로 이를 효과적으로 검출하여 문자인식시스템과 연동될 수 있다면 다양한 응용분야에서 활용될 수 있다. 그러므로 본 논문에서는 문자 및 문자열의 에지 특징을 이용하여 표시판이미지로부터 문자영역을 검출하는 방법을 제안한다. 캐니-에지 검출기로 에지를 검출하여 에지 이미지를 생성한다. 에지 이미지를 레이블링을 하여 연결요소 성분을 추출한다. 레이블 영역에서 문자와 문자열 에지 특징을 분석하여 후보 문자영역으로 추출한다. 후보 문자영역에 대한 검증을 수행함으로서 최종적인 문자영역을 검출한다. 제안한 방법은 다양한 종류의 자연이미지를 대상으로 실험하였고, 자연이미지에서 기울어진 문자영역과 다양한 크기의 문자를 갖는 문자영역을 효과적으로 검출하였다.

  • PDF

Anomaly Detection in printed patters using U-Net (U-Net 모델을 이용한 비정상 인쇄물 검출 방법)

  • Hong, Soon-Hyun;Nam, Hyeon-Gil;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.686-688
    • /
    • 2020
  • 본 논문에서는 U-Net 모델을 이용하여 정교하고 반복되는 패턴을 가진 인쇄물에 대한 비지도 학습을 통한 딥러닝 기반 이상치탐지(Anomaly Detection) 방법을 제안하였다. 인쇄물(카드)의 비정상 패턴 검출을 위하여 촬영한 영상으로부터 카드 영역을 분리한 이미지로 구성된 Dataset을 구축하였고 정상 이미지와 동일한 이미지를 출력하기 위해, 정상 이미지와 마스크 이미지 쌍의 Training dataset을 U-Net으로 학습하였다. Test dataset의 이미지를 입력으로 넣어 생성된 마스크 결과를 원본 마스크 이미지와 비교하여 이상 여부를 판단하는 본 논문의 방법이 정상, 비정상 인쇄물을 잘 구분하는 것을 확인하였다. 또한 정상과 비정상 이미지 각각을 학습한 지도학습 기반 CNN 분류 방법을 입력 영상과 복원 영상 간의 복원 오차를 비교하여 객체의 이상 여부를 판별하는 본 논문의 방법과 비교 평가하였다. 본 논문을 통해 U-Net을 사용하여 별도로 데이터에 대한 label 취득 없이 이상치를 검출할 수 있음을 확인할 수 있었다.

  • PDF

Image Generation Method for Malware Detection Based on Machine Learning (기계학습 기반 악성코드 검출을 위한 이미지 생성 방법)

  • Jeon, YeJin;Kim, Jin-e;Ahn, Joonseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.381-390
    • /
    • 2022
  • Many attempts have been made to apply image recognition based on machine learning which has recently advanced dramatically to malware detection. They convert executable files to images and train deep learning networks like CNN to recognize or categorize dangerous executable files, which shows promising results. In this study, we are looking for an effective image generation method that may be used to identify malware using machine learning. To that end, we experiment and assess the effectiveness of various image generation methods in relation to malware detection. Then, we suggest a linear image creation method which represents control flow more clearly and our experiment shows our method can result in better precision in malware detection.

Face Detection System Based on Candidate Extraction through Segmentation of Skin Area and Partial Face Classifier (피부색 영역의 분할을 통한 후보 검출과 부분 얼굴 분류기에 기반을 둔 얼굴 검출 시스템)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • In this paper we propose a face detection system which consists of a method of face candidate extraction using skin color and a method of face verification using the feature of facial structure. Firstly, the proposed extraction method of face candidate uses the image segmentation and merging algorithm in the regions of skin color and the neighboring regions of skin color. These two algorithms make it possible to select the face candidates from the variety of faces in the image with complicated backgrounds. Secondly, by using the partial face classifier, the proposed face validation method verifies the feature of face structure and then classifies face and non-face. This classifier uses face images only in the learning process and does not consider non-face images in order to use less number of training images. In the experimental, the proposed method of face candidate extraction can find more 9.55% faces on average as face candidates than other methods. Also in the experiment of face and non-face classification, the proposed face validation method obtains the face classification rate on the average 4.97% higher than other face/non-face classifiers when the non-face classification rate is about 99%.

Scene Text Detection with Length of Text (글자 수 정보를 이용한 이미지 내 글자 영역 검출 방법)

  • Yeong Woo Kim;Wonjun Kim
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.177-179
    • /
    • 2022
  • 딥러닝의 발전과 함께 합성곱 신경망 기반의 이미지 내 글자 영역 검출(Scene Text Detection) 방법들이 제안됐다. 그러나 이러한 방법들은 대부분 데이터셋이 제공하는 단어의 위치 정보만을 이용할 뿐 글자 영역이 갖는 고유한 정보인 글자 수는 활용하지 않는다. 따라서 본 논문에서는 글자 수 정보를 학습하여 효과적으로 이미지 내의 글자 영역을 검출하는 모듈을 제안한다. 제안하는 방법은 간단한 합성곱 신경망으로 구성된 이미지 내 글자 영역 검출 모델에 글자 수를 예측하는 모듈을 추가하여 학습을 진행하였다. 글자 영역 검출 성능 평가에 널리 사용되는 ICDAR 2015 데이터셋을 통해 기존 방법 대비 성능이 향상됨을 보였고, 글자 수 정보가 글자 영역을 감지하는 데 유효한 정보임을 확인했다.

  • PDF

MSER-based Character detection using contrast differences in natural images (자연 이미지에서 명암차이를 이용한 MSER 기반의 문자 검출 기법)

  • Kim, Jun Hyeok;Lee, Sang Hun;Lee, Gang Seong;Kim, Ki Bong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.27-34
    • /
    • 2019
  • In this paper, we propose a method to remove the background area by analyzing the pattern of the character area. In the character detection result of the MSER(Maximally Stable External Regions) method which distinguishes a region having a constant contrast background regions were detected. To solve this problem, we use the MSER method in natural images, the background is removed by calculating the change rate by searching the character area and the background area which are not different from the areas where the contrast values are different from each other. However, in the background removed image, using the LBP(Local Binary Patterns) method, the area with uniform values in the image was determined to be a character area and character detection was performed. Experiments were carried out with simple images with backgrounds, images with frontal characters, and images with slanted images. The proposed method has a high detection rate of 1.73% compared with the conventional MSER and MSER + LBP method.

Hybrid copy-move-forgery detection algorithm fusing keypoint-based and block-based approaches (특징점 기반 방식과 블록 기반 방식을 융합한 효율적인 CMF 위조 검출 방법)

  • Park, Chun-Su
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.7-13
    • /
    • 2018
  • The methods for detecting copy move frogery (CMF) are divided into two categories, block-based methods and keypoint-based methods. Block-based methods have a high computational cost because a large number of blocks should be examined for CMF detection. In addition, the forgery detection may fail if a tampered region undergoes geometric transformation. On the contrary, keypoint-based methods can overcome the disadvantages of the block-based approach, but it can not detect a tampered region if the CMF forgery occurs in the low entropy region of the image. Therefore, in this paper, we propose a method to detect CMF forgery in all areas of image by combining keypoint-based and block-based methods. The proposed method first performs keypoint-based CMF detection on the entire image. Then, the areas for which the forgery check is not performed are selected and the block-based CMF detection is performed for them. Therefore, the proposed CMF detection method makes it possible to detect CMF forgery occurring in all areas of the image. Experimental results show that the proposed method achieves better forgery detection performance than conventional methods.

Component Based Face Detection for PC Camera (PC카메라 환경을 위한 컴포넌트 기반 얼굴 검출)

  • Cho, Chi-Young;Kim, Soo-Hwan
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.988-992
    • /
    • 2006
  • 본 논문은 PC카메라 환경에서 명암왜곡에 강인한 얼굴검출을 위한 컴포넌트 기반 얼굴검출 기법을 제시한다. 영상 내의 얼굴검출을 위해 에지(edge) 분석, 색상 분석, 형판정합(template matching), 신경망(Neural Network), PCA(Principal Component Analysis), LDA(Linear Discriminant Analysis) 등의 기법들이 사용되고 있고, 영상의 왜곡을 보정하기 위해 히스토그램 분석(평활화, 명세화), gamma correction, log transform 등의 영상 보정 방법이 사용되고 있다. 그러나 기존의 얼굴검출 방법과 영상보정 방법은 검출대상 객체의 부분적인 잡음 및 조명의 왜곡에 대처하기가 어려운 단점이 있다. 특히 PC카메라 환경에서 획득된 이미지와 같이 전면과 후면, 상하좌우에서 비추어지는 조명에 의해 검출 대상 객체의 일부분이 왜곡되는 상황이 발생될 경우 기존의 방법으로는 높은 얼굴 검출 성능을 기대할 수 없는 상황이 발생된다. 본 논문에서는 기울어진 얼굴 및 부분적으로 명암 왜곡된 얼굴을 효율적으로 검출할 수 있도록 얼굴의 좌우 대칭성을 고려한 가로방향의 대칭평균화로 얼굴검출을 위한 모델을 생성하여 얼굴검출에 사용한다. 이 방법은 부분적으로 명암왜곡된 얼굴이미지를 기존의 영상 보정기법을 적용한 것 보다 잘 표현하며, 얼굴이 아닌 후보는 비얼굴 이미지의 형상을 가지게 하는 특성이 있다.

  • PDF

Body-Detection using Multi Skin-Detection for Improvement of Malicious Image Classifications (유해 이미지 분류 성능 개선을 위한 이중 피부 화소 검출을 이용한 인체 검출)

  • Kim, Semin;Jeon, Jaehyun;Min, Hyunseok;Ro, Yong Man;Han, Seungwan;Choi, Byeongcheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.82-85
    • /
    • 2010
  • 인터넷의 급속한 발달과 이미지 콘텐츠 개발 기술의 발달로 현재 누구나 쉽게 이미지 콘텐츠의 공유 및 배급이 용이해졌다. 그러나 이로 인해 누드나 포르노와 같은 불건전한 유해 이미지들의 접근 역시 쉬워지고 있다. 특히, 스마트 폰이나 스마트 TV 등 멀티미디어 기능이 가능한 휴대장치 및 단말기의 비약적인 발전으로 인하여, 언제 어디서나 우리들은 유해 이미지의 노출되어 있다. 따라서 유해 이미지 시청이 적당하지 않은 연령층까지 무방비 상태에 놓여 있기 때문에 이를 막을 수 있는 시급한 대책이 요구되고 있다. 본 논문에서는 이중 피부 화소 검출에 이용하여 인체 영역 검출해내고 이것을 이용하여 유해 이미지 분류를 위한 방법을 제안하고자 한다. 일반적으로 피부 화소 검출 기법은 오차율을 가지고 있기 때문에 정확한 검출이 힘들다. 따라서 우리는 검출에 대한 강도를 조절하여 이중으로 피부 화소를 검출하여 좀더 정확한 피부 영역을 획득한다. 또한 기존의 방법들은 대체로 일차적인 피부 영역 검출에 초점을 둔 반면, 유해 판별의 주된 기준이 되는 가슴이나 성기, 엉덩이 등을 좀 더 중점적으로 찾으려 하지 않았다. 따라서 본 논문에서는 검출된 피부 영역에서 유해 부위를 좀 더 집중적으로 찾아 유해 판별 성능을 높이는 방법을 제안하고 실험으로 증명을 하고자 한다.

  • PDF