• 제목/요약/키워드: 이미지 검색 알고리즘

검색결과 140건 처리시간 0.031초

내용 기반 이미지 검색을 위한 복합 질의문 계획 생성 기법 (Generating Combined Query Plan for Content-Based Image Retrieval)

  • 박미화;엄기현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제27권4호
    • /
    • pp.562-571
    • /
    • 2000
  • 이미지 데이터는 텍스트 데이터와는 달리 다양한 색상과 모양, 질감과 같은 비정형적인 특징을 가진다. 따라서 이미지 데이터베이스는 텍스트 기반의 전통 데이터베이스와는 다른 모델링 방법과 질의, 검색 방법을 사용한. 특히, 내용 기반 이미지 검색에서의 검색 속도와 정확도를 향상시키기 위해서는 새로운 복합 질의문 계획 생성 기법이 필요하다. 본 논문에서는 이를 위해 먼저, 단일 조건을 갖는 시각 질의에 대한 처리 기법들을 토대로 여러 조건을 갖는 복합 질의를 처리하기 위한 복합 질의문 계획 생성기법인 SSCC(Similarity Search for Conjunction Combination Query) 알고리즘을 제안한다. SSCC는 이미지 데이터베이스 검색 시스템에서 복합 질의를 처리하기 위한 질의 최적화 과정에서 질의 수행 시간과 투플 I/O를 최소화하는 질의문 계획을 생성하기 위해 사용된다. SSCC 알고리즘은 복합질의를 단일 질의들로 준해하고 퍼지 집합 이론을 도입하여 단일 질의의 결과들을 통합한다. 논문에서 연구된 내용 기반 복합 질의문 계획 생성 기법은 특정 이미지 영역에 국한되지 않으며 다양한 종류의 시각 질의를 수행하기 위한 효율적인 질의문 계획 생성 기법으로 사용될 수 있다.

  • PDF

소셜 이미지 분류를 위한 클러스터링 알고리즘 기반 트레이닝 집합 획득 기법의 비교 (A Study on Comparison of Clustering Algorithm-based Methods for Acquiring Training Sets for Social Image Classification)

  • 정진우;이동호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1294-1297
    • /
    • 2011
  • 최근, Flickr, YouTube 와 같은 사용자 참여형 미디어 공유 및 검색 사이트가 폭발적으로 증가하면서, 이를 멀티미디어 정보 검색 서비스에 효과적으로 활용하기 위한 다양한 연구들이 시도되고 있다. 특히, 이미지에 할당되어 있는 태그를 이용하여 이미지를 효과적으로 검색하기 위한 연구가 활발히 진행 중이다. 그러나 사용자들에 의해 제공되는 소셜 이미지들은 매우 다양한 범위와 주제를 가지고 있기 때문에, 소셜 이미지들의 분류 및 태그 할당을 위한 트레이닝 집합의 획득이 쉽지 않다는 한계점을 가지고 있다. 본 논문에서는 데이터 군집화를 위한 클러스터링 알고리즘들 중 K-Means, K-Medoids, Affinity Propagation 을 활용하여 소셜 이미지 집합으로부터 트레이닝 집합을 획득하기 위한 방법들을 살펴 본다. 또한, 각 알고리즘으로부터 획득한 트레이닝 집합을 이용하여 소셜 이미지를 분류한 결과를 비교 분석한다.

이미지 데이터베이스 유사도 순위 매김 알고리즘 (A Similarity Ranking Algorithm for Image Databases)

  • 차광호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권5호
    • /
    • pp.366-373
    • /
    • 2009
  • 이 논문은 이미지 데이터베이스를 위한 유사도 순위 매김 알고리즘을 제시한다. 이미지 검색의 문제점 중 하나가 이미지로부터 자동적으로 계산한 하위 레벨 특성과 인간 지각과의 의미 차이이며, 검색시에 이미지 유사도 측정을 위해 많은 알고리즘에서는 민코프스키 측정법($L_p$-norm)을 사용하고 있다. 그러나 민코프스키 측정법은 인간 시각 시스템의 비선형적 특성과 문맥 정보를 반영하지 못한다. 본 알고리즘에서는 인간 지각의 비선형성과 문맥 정보를 반영하는 유사도와 탐색 알고리즘을 통해 이 문제를 해결한다. 본 알고리즘을 필기체 숫자 이미지 데이터베이스에 적용하여 성능의 우수성과 효과를 증명하였다.

데이터 융합을 이용한 내용기반 이미지 검색에 관한 연구 (Content-based Image Retrieval Using Data Fusion Strategy)

  • 백우진;정선은;김기영;안의근;신문선
    • 정보관리학회지
    • /
    • 제25권2호
    • /
    • pp.49-68
    • /
    • 2008
  • 지금까지의 정보검색 연구에서 데이터 융합 기법을 이용한 문서 검색은 하나의 알고리즘에 의한 검색에 비하여 많은 경우에 효율성이 높은 결과를 얻을 수 있었다. 하지만 이미지 검색에서 상이한 알고리즘을 이용한 다수의 검색 결과를 합쳐 하나의 검색결과를 얻는 데이터 융합 기법의 사용은 많지 않았다. 이 연구에서는 소벨 연산자를 이용한 윤곽선 검출과 자기조직화 지도 알고리즘에 의한 두 검색 결과를 융합하여 각각의 알고리즘에 의한 검색결과 보다 높은 효율성을 보여주는 방법을 제시하였다. 이 연구에서는 상용 클립아트 이미지를 이용하여 사람의 주관적인 적합성 판단을 배제한 검색 실험 데이터를 만들어 사용하였다.

의미적 연관태그와 이미지 내용정보를 이용한 웹 이미지 분류 (Web Image Classification using Semantically Related Tags and Image Content)

  • 조수선
    • 인터넷정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.15-24
    • /
    • 2010
  • 본 논문에서는 대용량 온라인 이미지 공유 사이트를 적용 도메인으로 하여 이미지 검색의 만족도를 높이고자 태그의 의미적 연관성과 이미지 자체의 내용 정보를 결합하는 이미지 분류 방법을 제안한다. 이미지 검색 및 분류 알고리즘이 플리커와 같은 대용량 이미지 공유 사이트에서 활용될 수 있으려면 실제 웹상의 태깅된 이미지를 대상으로 한 적용이 가능해야 한다. 제안된 알고리즘은 'bag of visual word'기반의 이미지 내용으로 웹 이미지를 분류하기 위한 것으로서, 의미적 연관태그를 이용해 일차 검색된 이미지들을 훈련 데이터로 사용하여 카테고리 모델을 훈련하고, PLSA를 적용하여 평가 이미지들을 분류하는 것이다. 제안된 방법으로 플리커의 웹 이미지들을 대상으로 실험한 결과, 태그 정보를 이용한 기존의 방법에 비해 우수한 검색 정확도 및 재현율을 확인할 수 있었다.

ELIS : 효과적인 식물 잎 이미지 검색 시스템 (ELIS : An Effective Leaf Image Retrieval System)

  • 남윤영;황인준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.118-120
    • /
    • 2005
  • 본 논문은 모양 특성을 이용한 효과적인 식물 잎 이미지 검색 시스템을 제시한다. 잎 이미지의 더 효과적인 표현을 위해 개선된 MPP 알고리즘을 제안하고, 매칭에 소요되는 시간을 줄이기 위해 기존의 Nearest Neighbor(NN) 검색을 수정한 동적인 매칭 알고리즘을 제시한다. 특히, 더 나은 정확율과 효율성을 위해, 잎 모양과 잎차례를 스케치하여 질의할 수 있도록 하였다. 실험에서는 제안한 알고리즘과 기존의 알고리즘인 Fourier Descriptor, Moment Invariants, MPP와 비교하였다. 1000여개의 식물 잎 이미지를 통한 실험결과는 제안한 방법이 기존의 기법보다 더 좋은 성능임을 보였다.

  • PDF

Self Organizing Map(SOM) 알고리즘을 이용한 상표의 내용기반 이미지검색 성능평가에 관한 연구 (An Evaluative Study on the Content-based Trademark Image Retrieval System Based on Self Organizing Map(SOM) Algorithm)

  • 백우진;이재준;신민기;안의건;함은미;신문선
    • 정보관리학회지
    • /
    • 제24권3호
    • /
    • pp.321-341
    • /
    • 2007
  • 산업재산권중 하나인 상표에 대한 효율적인 이미지 검색은 상표도용 및 이로 인한 분쟁을 방지할 수 있다. 이를 위해서 효율적인 내용기반 유사이미지 검색이 하나의 방안이 될 수 있다. 본 논문은 상표이미지로부터 회색조 히스토그램(gray histogram) 분석을 통하여 가시적인 자질을 추출하여 Self Organizing Map(SOM) 알고리즘을 적용한 내용기반 유사이미지 검색시스템을 이용하는 방법을 제안하였다. 또한 내용기반 유사이미지 검색시스템의 정량적인 성능평가 방안을 제시하여 본 연구에서 개발한 이미지 검색 시스템의 객관적인 성능평가를 수행하였다.

영역기반 이미지 검색을 위한 칼라 이미지 세그멘테이션 (Color Image Segmentation for Region-Based Image Retrieval)

  • 황환규
    • 전자공학회논문지CI
    • /
    • 제45권1호
    • /
    • pp.11-24
    • /
    • 2008
  • 효율적인 저차원의 인덱싱을 제공하기 위해 이미지를 유사한 성질을 갖는 영역으로 나누고, 나누어진 영역에 대해 유사성을 비교하는 영역 기반 이미지 검색이 제안되었다. 그러나 영역 기반 이미지 검색은 이미지를 유사한 영역으로 나누기 위한 이미지 세그멘테이션 기술이 추가적으로 필요하다. 일반적인 칼라 자연 이미지의 경우 다양한 칼라와 질감 성분을 갖는 영역으로 나누는 것은 많은 어려움이 있다. 본 논문에서는 자동적인 칼라 이미지 세그멘테이션 알고리즘을 제안한다. 제안하는 세그멘테이션 방법은 양자화를 통해 칼라수를 줄이고 양자화 된 이미지를 Fisher의 클래스 선형 판별식을 이용하여 이미지의 전체적인 에지를 보여주는 그레이 레벨 이미지를 생성한다. 이렇게 얻은 그레이 레벨 에지 이미지를 지역적 임계치 비교를 통해 이진 에지 이미지로 변환하고 이진 에지의 끊어진 부분을 찾아내어 인접 에지에 연결하여 영역을 생성한다. 마지막으로 나누어진 영역간의 유사성을 비교하고 유사한 영역을 병합하여 최종 세그멘테이션 결과 이미지를 생성한다. 본 논문에서는 세그멘테이션 알고리즘을 이용한 영역 기반 이미지 검색 시스템을 구현하였으며, 다양한 실험에 의하면 제안한 세그멘테이션 방법이 다양한 이미지에 대하여 양질의 세그멘테이션 결과를 보이는 것으로 나타났다.

온톨로지 어노테이션을 이용한 유사이미지 검색 시스템의 설계 (Design of Similar Image Search System using Ontology Annotation)

  • 노현덕;이태휘;임동혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.674-675
    • /
    • 2015
  • 최근 이미지가 가지는 의미적 정보를 온톨로지로 어노테이션한 후 이미지를 분류하고 검색하는 방법들이 제안되고 있다. 하지만 이미지 검색이 어노테이션된 데이터에 SPARQL 질의를 통해 이루어지기 때문에 질의 결과와 일치하는 이미지들만 검색이 된다. 본 논문에서는 기존의 의미 기반 질의 방식이 아닌 이미지에 어노테이션된 온톨로지를 이용하여 유사 이미지를 검색하는 시스템을 제안한다. 설계된 시스템은 이미지가 가지는 태그 정보를 RDF 온톨로지로 확장하는 기존 연구에 추가적으로 온톨로지 유사 매칭 알고리즘을 사용하여 사용자가 원하는 유사 이미지를 검색할 수 있도록 한다.

윤곽선 특성과 동적 시간 정합을 이용한 식물 잎 이미지 검색 기법 (A Leaf Image Retrieval Scheme based on Shape Descriptor and Dynamic Time Warping)

  • 탁윤식;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.3-5
    • /
    • 2007
  • 본 논문에서는 새로운 내용기반 이미지 검색 기법으로 식물 잎의 윤곽선에 대하여 동적 시간 정합 기법을 이용하여 유사한 이미지를 효과적으로 검색하는 방법을 제안한다. 이를 위하여 우선 식물 잎의 기준점에 대하여 잎의 가장자리를 따라 가면서 구해지는 거리의 곡선을 통하여 잎의 외형 특성을 표현하였다. 추출된 곡선 정보의 효율적인 저장과 처리를 위하여 곡선의 특성을 표현할 수 있는 퓨리에 계수(Fourier Coefficients)를 계산하고 이를 바탕으로 유사한 이미지를 계산하였다. 이런 과정에서 생기는 문제점으로는 복잡한 형태의 곡선에 대해서는 퓨리에 계수를 통하여 저장하고 복원하는 과정에서 원본 곡선의 세부적인 형태 정보를 상실하게 된다. 이러한 문제를 해결하기 위해서는 복잡한 곡선 유형에 대해서는 복원시 상실되는 정보가 최소화될 수 있는 작은 단위의 구간으로 나누고 이에 대한 퓨리에 계수를 계산하는 방법으로 다수의 퓨리에 계수 세트를 추출하는 이진 구간 분할 (Binary Range Reduction) 알고리즘을 사용하였고 질의 이미지와 저장된 이미지들을 비교하는 과정에서 검색의 정확도를 향상시키기 위하여 동적 시간 정합(Dynamic Time Warping) 알고리즘을 사용하였다. 그리고 검색의 효율을 더욱 높이기 위하여 추출된 외형 정보를 기반으로 잎의 유형을 다양한 카테고리로 분류하는 외형 기형 기반의 잎 분류 기법을 제안하였다. 다양한 실험을 통하여 제안한 기법이 식물 잎 검색에 우수한 성능을 나타냄을 보인다.