• Title/Summary/Keyword: 이륙중량

Search Result 33, Processing Time 0.031 seconds

Analysis of Associated Factors for Aircraft Takeoff Weight Estimation (Based on B737-800) (항공기 이륙중량 추정을 위한 관련 요인 분석 (B737-800을 중심으로))

  • Seung-Pyo Lee;Sung-Kwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.658-665
    • /
    • 2023
  • Take-off weight is a key factor for improving accuracy when estimating an aircraft's carbon emissions and fuel consumption. However, the takeoff weight contains sensitive payload information that can infer the airline's management strategy, making it impossible to leak it outside. Although several models for estimating takeoff weight have been presented in previous studies, the researcher points out that there are limitations of the study caused by variables at the pilot's discretion. In this paper, several variables related to takeoff weight are identified to suggest a way to control these limits. Among them, variables that can improve the accuracy of takeoff weight are selected and an estimation equation is presented by applying them to ADS-B information. The proposed estimation does not estimate the average takeoff weight but has the advantage of being able to estimate all ranges of the takeoff weight.

Verification of Weight Effect Using Actual Flight Data of A350 Model (A350 모델의 비행실적을 이용한 중량 효과 검증)

  • Jang, Sungwoo;Yoo, Jae Leame;Yo, Kwang Eui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.13-20
    • /
    • 2022
  • Aircraft weight is an important factor affecting performance and fuel efficiency. In the conceptual design stage of the aircraft, the process of balancing cost and weight is performed using empirical formulas such as fuel consumption cost per weight in estimating element weight. In addition, when an airline operates an aircraft, it promotes fuel efficiency improvement, fuel saving and carbon reduction through weight management activities. The relationship between changes in aircraft weight and changes in fuel consumption is called the cost of weight, and the cost of weight is used to evaluate the effect of adding or reducing weight to an aircraft on fuel consumption. In this study, the problems of the existing cost of weight calculation method are identified, and a new cost of weight calculation method is introduced to solve the problem. Using Breguet's Range Formula and actual flight data of the A350-900 aircraft, two weight costs are calculated based on take-off weight and landing weight. In conclusion, it was suggested that it is reasonable to use the cost of weight based on the take-off weight and the landing weight for other purposes. In particular, the cost of weight based on the landing weight can be used as an empirical formula for estimating element weight and optimizing cost and weight in the conceptual design stage of similar aircraft.

An Education Plan for Camera Drone (촬영용 드론 교육 방안)

  • Park, Sung-Dae;Han, Kun-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1206-1213
    • /
    • 2021
  • A drone invented for the military has been increased the range of application with the development of relevant technology, and it influences to include the private area. Currently, the use of drone has been increasing in many areas, such as agriculture, unmanned parcel service, production of image contents, and architecture. In 2021, South of Korea, a drone certificate system for drone flight is introduced and on operation. In case of drone flight with the maximum takeoff weight as 2kg or up, the flight experience and practical examination are required, whereas in case of drone lighter than 2kg, the online education qualification is enough to operate it without the flight experience and practical examination. Recently, the drone related accidents have been increasing with the rapidly supply of camera drones with the maximum takeoff weight as less than 2kg. This paper introduces the characteristics of the camera drone to meet burgeoning demand, and discusses an education plan for the camera drone.

Initial Sizing of a Glider Type High Altitude Long Endurance Unmanned Aerial Vehicle Using Alternative Energy (대체에너지를 사용한 글라이더형 고고도 장기체공 무인항공기의 초기사이징)

  • Han, Hye-Sun;Kim, Chan-Eol;Hwang, Ho-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.47-58
    • /
    • 2014
  • In this research, the initial sizing of a HALE(High Altitude Long Endurance) UAV which uses solar power and hydrogen fuel cell as an alternative energy was performed. Instead of a wing box type, a glider type was chosen since it is relatively easy to get a data thanks to many researches abroad. Maximum takeoff weight is around 150Kg and the propulsion system is composed of motor, propeller, solar cell, and hydrogen fuel cell which can be recharged through electrolysis. Maximum takeoff weight was estimated as aspect ratio, wing span, wing area change while considering energy balance of required energy which is necessary for flight during the entire day and available energy which can be taken from the solar cell.

Configuration and Performance Analyses for Conceptual Design of Small and Mid-Unmanned Aerial Vehicles (중소형 무인항공기 개념설계를 위한 형상 및 성능 분석)

  • Jeon, Byung-Il;Lee, Narae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.478-487
    • /
    • 2014
  • The simplified performance analysis and initial configuration design are required for the successful development of UAV during the conceptual design, in which empirical formulas and trend equations are utilized for the UAV performance analysis. In the conceptual design phase various UAV configurations may be considered, however, it is very inefficient and unnecessary to consider all configurations for the conceptual design. In this study, the database for the fixed wing UAVs whose MTOW is between 50kg and 1,500kg was also constructed for the selection of configuration frequently used. The parametric analyses were performed for major performance parameters, and trend equations were developed through regression analyses for these individual performance parameters.

Target Level of Safety Analysis in Airworthiness Certification for Military UAV (군용무인기의 감항인증 목표안전수준 분석)

  • Lee, Narae;Jeon, Byung-Il;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.840-848
    • /
    • 2013
  • Airworthiness certification of military aircraft is a government's certification that it must have airworthiness and ability to demonstrate its requested function and performance. NATO released STANAG-4671 to establish the minimum airworthiness requirements for UAVs between 150kg and 20,000kg MTOW in 2009. Up to now, there are no clear airworthiness certification criteria and guideline for small UAV which is less than 150kg. STANAG-4671 is used for military UAV airworthiness certification in Korea as Other Airworthiness Certification Criteria. However, since STANAG-4671 requires the same Target Level of Safety without regard to MTOW, excessive Target Level of Safety or design requirements could be applied to relatively small-medium UAV. In this paper, classification and criteria of airworthiness certification for military UAV were investigated and a Target Level of Safety was analyzed based on MTOW using ground victim criteria.

Canard Rotor/Wing 비행체 추진시스템의 회전익 및 천이모드 성능

  • Lee, Chang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.50-55
    • /
    • 2004
  • Performance predictions of the propulsion system were conducted for a 900㎏ class Canard Rotor/Wing vehicle. The main components of the propulsion system are turbojet engine, exhaust ducts and nozzles. The internal flow of the duct was considered as one-dimensional, compressible and viscous flow. Adequate governing equations including centrifugal force effect were applied to the analysis of the duct flows. Results such as available power, available thrust, engine throttle, mass flow rates, rotor RPM and cruise nozzle area were presented for rotary-wing mode and transition mode.

  • PDF

A Study on Site Positions for Monitoring Efficiency Improvements of the Aircraft Noise Monitoring Stations (항공기소음 자동측정국 감시효율 향상을 위한 위치설정에 대한 연구)

  • Son, Jung-Gon;Jeong, Woo-Hong;Hwang, Min-Gee;Gwon, Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.50-55
    • /
    • 2009
  • The monitoring efficiency of the aircraft noise monitoring stations is decided to the reference noise level and the infringement of each monitoring stations. We calcurates the monitoring efficiency of three noise monitoring station among twelve in the vicinity of Gimpo Int'l Airport. As a result, the monitoring efficiency shows that the noise monitoring stations No#3, No#5 and No#6 are 14.3%, 18.5% and 29.3% respectively, Among them No#6 staion looks higher efficiency than another two stations because of underneath the flight trackas.

Weight Reduction of the Reusable Launch Vehicles Using RBCC Engines (RBCC엔진을 적용한 재사용발사체의 중량저감효과)

  • Kang, Sang Hun;Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.56-66
    • /
    • 2013
  • Weight reduction of the VTHL / TSTO type of the reusable launch vehicles using RBCC engines are investigated. To predict weight and thrust of the vehicles, equations of motion are analyzed. Analysis results are compared with specifications of existing launch vehicles for validations. For the mission of inserting 2.5 ton payload to 200 km circular orbit, the case A, which uses the RBCC engine in the 1st stage shows smaller weight than the case B, which uses the RBCC engine in the 2nd stage. The weight of the case A shows only 25.8% of a existing rocket launch vehicle's weight.

Performance Requirement Analysis and Weight Estimation of Reusable Launch Vehicle using Rocket based Air-breathing Engine (로켓기반 공기흡입추진 엔진이 적용된 재사용 발사체의 요구 성능 및 중량 분석)

  • Lee, Kyung-Jae;Yang, Inyoung;Lee, Yang-Ji;Kim, Chun-Taek;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.10-18
    • /
    • 2015
  • Performance requirement analysis and weight estimation of a reusable launch vehicle with a rocket-based air-breathing engine(RBCC : Rocket Based Combined Cycle) were performed. Performance model for an RBCC engine was developed and integrated with flight trajectory model. The integrated engine-trajectory model was validated by comparing the results with those from previous research reference. Based on the new engine-trajectory model and previous research results, engine performance requirements were derived for an reusable launching vehicle with gross take-off weight of 15 tones. Dependence of the propellant amount requirement on the mode transition Mach number of the engine was also analyzed.