• Title/Summary/Keyword: 이륙성능

Search Result 40, Processing Time 0.024 seconds

A Study on Performance Analysis Technique of Turboprop Engine(PT6A-62) Using $EASY5^{\circledR}$ (EASY5를 이용한 더보프롭엔진(PT6A-62)의 성능해석기법에 관한 연구)

  • 공창덕;최인수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • A steady-state performance simulation program using $EASY5^{(R)}$ on the turboprop engine was developed through in this study. The PT6A-62 turboprop engine which is the power plant of the first Korean basic trainer KT-1, was selected for this study. In order to evaluate the proposed perfrmance model the analysis results of $EASY5^{(R)}$ model were compared with the simulated results by the GASTURB program, which is well blown commercially for the simulation performance analysis at various cases. The first case was the uninstalled condition with various altitudes from ground to 30000ft and flight Mach No. 0. The second case was the install condition with various altitude from ground to M at the maximum take off and the ECS (Environmental Control System) OFF conditions. The third case was install condition with the altitude range from 5000 ft to 1000ft and Mach No. 0.1 to 0.3 at maximum ECS operating condition. It was confirm that the results by the $EASY5^{(R)}$ model were well agreed with those by GASTURB within maximum 5.0%

Performance Analysis of an Electric Powered Small Unmanned Aerial Vehicle (전기동력 소형무인항공기의 성능분석)

  • Lee, Chang-Ho;Kim, Sung-Yug;Kim, Dong-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2010
  • A small unmanned aerial vehicle(UAV), which uses a propulsion system consisting of electric motor and battery, weighs less than 8 kg, capable of hand launch. Because it is easy to operate and able to transmit image information in real time, the use of small UAV has been increasing. However, very few analysis methods or analysis results on flight performance of the small UAV have been known so far. In this paper, the performance analysis methods of a small UAV, which is manufactured to study an electric powered UAV, are suggested and their results are achieved. Aerodynamic data of the vehicle are obtained by making use of gliding performance from actual flight test, and required thrust and required power by flight speed are predicted. In addition, the methods to predict range and endurance in case of using battery as power source are suggested and their results are achieved.

Acoustic Loads Reduction of Composite Plates for Nose Fairing Structure (노즈 페어링 구조용 복합재 평판의 음향 하중 저감 특성)

  • 박순홍;공철원;장영순;이영무
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.15-22
    • /
    • 2004
  • Acoustic load generated by rocket propulsion system is one of major dynamic loads during lift-off phase so that it causes the structural failure and electronic malfunction of payloads. Acoustic loads can be greatly reduced by an appropriate acoustical design of nose faring structures. This paper deals with the acoustical design of the nose fairing structure for launch vehicle. It is well known that a honeycomb sandwich structure is a poor sound insulator because of its high specific stiffness. In this paper, the sound transmission characteristics of four kinds of honeycomb structures for noise fairing were investigated by means of numerical and experimental ways. In order to estimate transmission loss, infinite plate theory by Moore and Lyon and statistical energy analysis (SEA) method were used. The predicted results showed a good agreement with measured ones. These enabled us to determine a proper core material for nose fairing, which shows good sound insulation performance per weight.

Performance analysis of Coaxial Propeller for Multicopter Type PAV (Personal Air Vehicle) (멀티콥터형 PAV(Personal Air Vehicle)의 동축반전 프로펠러에 대한 성능해석)

  • Kim, Young Tae;Park, Chang Hwan;Kim, Hak Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 2019
  • Performance analyses were performed on a propeller developed for use in a PAV (Personal Air Vehicle) under 600 kg Maximum Take-Off Weight (MTOW). The actuator disc theory and CFD analyses were used to estimate the hovering time with regards to MTOW variation for a given battery weight. The interference induced power factor kint was introduced to account for the effect of flow interference between the propellers and to estimate the performance of counter-rotating propellers. The Maximum Figure of Merit (FM) value of the propeller pitch was determined and the design RPM range for the required power inversely obtained from the CFD results. Previous research indicate that the flight time of large multi-copter is limited by the available battery energy density. Similarly, the propeller pitch settings and spacing are important factors in reducing the kint value.

Performance Requirement Analysis and Weight Estimation of Reusable Launch Vehicle using Rocket based Air-breathing Engine (로켓기반 공기흡입추진 엔진이 적용된 재사용 발사체의 요구 성능 및 중량 분석)

  • Lee, Kyung-Jae;Yang, Inyoung;Lee, Yang-Ji;Kim, Chun-Taek;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.10-18
    • /
    • 2015
  • Performance requirement analysis and weight estimation of a reusable launch vehicle with a rocket-based air-breathing engine(RBCC : Rocket Based Combined Cycle) were performed. Performance model for an RBCC engine was developed and integrated with flight trajectory model. The integrated engine-trajectory model was validated by comparing the results with those from previous research reference. Based on the new engine-trajectory model and previous research results, engine performance requirements were derived for an reusable launching vehicle with gross take-off weight of 15 tones. Dependence of the propellant amount requirement on the mode transition Mach number of the engine was also analyzed.

Surge Control of Turbofan Engine Compressor with the Variable Inlet Guide Vane (가변 안내익을 이용한 터보팬 엔진 압축기의 서지 제어)

  • Bae, Kyoungwook;Kim, Sangjo;Han, Dongin;Min, Chanoh;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.539-546
    • /
    • 2013
  • Surge phenomenon can be occurred in a compressor when compressor performance of turbofan engine for an aircraft is changed considerably in a short time on the cases like take-off phase and changing of RPM from idle to maximum, because performance of aircraft engine is changed suddenly. This study is aimed to avoid surge in a compressor. Dynamic simulation in a compressor is modeled by simulink in specific condition. Fuel flow is control input, rpm and air mass flow are expressed in terms of transfer function. Surge margin is obtained by using compressor performance map from NPSS. VIGV(Variable Inlet Guide Vane) is controlled by PD controller with difference between surge margin and reference. Finally this paper verifies IGV can prevent surge phenomenon in a compressor.

A Trade-Off Study of the Number of Engines for Fighter Characteristics (엔진 수에 따른 전투기 특성 비교분석연구)

  • Kim, Sung-Lae;Reu, Tae-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.102-109
    • /
    • 2003
  • The number of engines for fighters has been decided by thrust required and available engines at the time since the beginning of the jet age. However, many factors such as combat effectiveness, survivability, performance, and cost were considered as engine technology has been progressed. From the vietnam war and desert storm, a twin engine fighter was shown slight superiority to a single engine one in an vulnerability,but single engine fighters were a little predominant in susceptibility This paper includes the trade-off study results on the number of engines for the supersonic light attack aircraft with single and twin engines. Twin engine configuration is 8%, 26%, and 13% higher than single engine one in MTOGW, Flyaway Cost, and LCC respectively. Little difference has been found in RM&S, Maneuver and field performance. According to the factors above, single engine fighter is profitable for low class and twin engine one for medium and higher class.

A Design Study on a Phase Change Heat Exchanger of an Environmental Control System for a POD (POD용 환경조절장치를 위한 상변화열교환기 개념연구)

  • Yoo, Yung-Jun;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • While a conventional ECS mainly consisted of an air cycle machine and heat exchangers, a new concept of a phase change heat exchanger was added to improve the transient performance of the ECS. As a result, an ECS modeling program including the phase change heat exchanger is newly developed to estimate its effect in various flight conditions such as take-off, maneuver, cruise, and landing. The simulation result regarding a virtual flight profile has confirmed the new ECS fulfilled the requirement by showing the temperature of the cooling air returned from the bay was always kept below $80^{\circ}C$. Through this study, the new ECS concept with PCHE was verified successfully.

Verification of Weight Effect Using Actual Flight Data of A350 Model (A350 모델의 비행실적을 이용한 중량 효과 검증)

  • Jang, Sungwoo;Yoo, Jae Leame;Yo, Kwang Eui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.13-20
    • /
    • 2022
  • Aircraft weight is an important factor affecting performance and fuel efficiency. In the conceptual design stage of the aircraft, the process of balancing cost and weight is performed using empirical formulas such as fuel consumption cost per weight in estimating element weight. In addition, when an airline operates an aircraft, it promotes fuel efficiency improvement, fuel saving and carbon reduction through weight management activities. The relationship between changes in aircraft weight and changes in fuel consumption is called the cost of weight, and the cost of weight is used to evaluate the effect of adding or reducing weight to an aircraft on fuel consumption. In this study, the problems of the existing cost of weight calculation method are identified, and a new cost of weight calculation method is introduced to solve the problem. Using Breguet's Range Formula and actual flight data of the A350-900 aircraft, two weight costs are calculated based on take-off weight and landing weight. In conclusion, it was suggested that it is reasonable to use the cost of weight based on the take-off weight and the landing weight for other purposes. In particular, the cost of weight based on the landing weight can be used as an empirical formula for estimating element weight and optimizing cost and weight in the conceptual design stage of similar aircraft.

Study on Technical Standard of Aviation GNSS for SBAS Performance Based Navigation (SBAS 성능기반 항행을 위한 항공용 GNSS 기술표준 분석 연구)

  • Park, Jae-ik;Lee, Eunsung;Heo, Moon-beom;Nam, Gi-wook
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.305-313
    • /
    • 2016
  • International Civil Aviation Organization (ICAO) has recommended the adoption of performance-based navigation (PBN), which utilizes global navigation satellite system (GNSS). As a part of efforts to adopt PBN in South Korea, preparations have been made to implement GNSS. In Oct. 2014, Korea augmentation satellite system (KASS) was officially launched for development. A set of navigation devices need to be on-board for an airplane to utilize GNSS. GNSS navigation devices are used for different phases of flights through en-route, terminal, departure, approach and a wide variety of specification standards have been proposed for GNSS navigation. In this paper, we investigate the many proposed standards for GNSS navigation devices and their interfaces. This paper can be useful for designing procedures and flight test used in KASS implementation.