• Title/Summary/Keyword: 이류체

Search Result 45, Processing Time 0.024 seconds

Studies on Community of Meiobenthos in the Sediments of the Lake Shiwha (시화호 퇴적물에 서식하는 중형저서동물의 군집구조에 관하여)

  • 김동성;이재학
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.159-171
    • /
    • 2001
  • Community structure, horizontal distribution, density, and ratio between nematodes and benthic harpacticoid copepods of the meiobenthos within the sediments of inner Sihwa Lake were investigated in May 1999 and May 2000. A total of 11 and 8 classes of meiobenthic animals were identified in 1999 and 2000, respectively, which were much lower than other coastal areas. The dominant animals during both sampling periods was the nematodes, followed by sarco-mastigophorans, nauplius of crustaceans, benthic harpacticoid copepods and polychaetes. These five classes of animals comprised more than 90% of total abundance of neiobenthos presented in the samples. In 2000, a lot of polychaete larvae were identified. The most abundant animal were the size that fits in 0.063 mm sieve size. Lower density was observed upper inner part of the Sihwa Lake during both sampling periods, and higher density was observed around the Sihwa floodgates. The average density between those two numbers were observed in the samples collected in the middle of the lake. Lower nematodes to betnhic harpacticoides (N/C) ratio, a relative indicator of environmental pollution, was observed to be lower around the floodgate but higher ratios were observed in the upper inner Sihwa Lake. The present study indicated that inner upper part of the lake becomes unsuitable for the meiobenthos, and the most inner upper lake was considered to be polluted.

  • PDF

Coupled simulation of grid-based fluid and mass-spring based deformation/fracture (질점-용수철 기반변형/파괴 물체와 격자 기반 유체의 상호작용 시뮬레이션 기술)

  • Kim, Bong-Jun;Lim, Jae-Gwang;Hong, Jeong-Mo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.4
    • /
    • pp.9-16
    • /
    • 2014
  • This paper proposes a novel method that couples fluid and deformation/fracture. Our method considers two interaction types: fluid-object interaction and fluid-fluid interaction. In fluid-fluid interaction, we simulate water and smoke separately and blend their velocities in the intersecting region depend on their densities. Our method separates projection process into two steps for each of water and smoke. This reduces the number of grid cells required for projection in order to optimize the number of iterations for convergence and improve stability of the simulation. In water projection step, smoke region regarded as the cells with Dirichlet boundary condition. The smoke projection step solves water region with Neumann boundary condition. To take care of fluid-object interaction, we make use of the fluid pressure to update velocities of the each of the mass points so that the object can deform or fracture. Although our method doesn't provide physically accurate results, the various examples show that our method generate appealing visuals with good performance.

Model Development on the Fate and Transport of Chemical Species in Marsh Wetland Sediments Considering the Effects of Plants and Tides (식생과 조석의 영향을 고려한 연안습지 퇴적물 내 물질거동 모형의 개발)

  • Park, Do-Hyun;Wang, Soo-Kyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.53-64
    • /
    • 2009
  • Wetlands can remove organic contaminants, metals and radionuclides from wastewater through various biogeochemical mechanisms. In this study, a mathematical model was developed for simulating the fate and transport of chemical species in marsh wetland sediments. The proposed model is a one-dimensional vertical saturated model which is incorporated advection, hydrodynamic dispersion, biodegradation, oxidative/reductive chemical reactions and the effects from external environments such as the growth of plants and the fluctuation of water level due to periodic tides. The tidal effects causes periodic changes of porewater flow in the sediments and the evapotranspiration and oxygen supply by plant roots affect the porewater flow and redox condition on in the rhizosphere along with seasonal variation. A series of numerical experiments under hypothetical conditions were performed for simulating the temporal and spatial distribution of chemical species of interests using the proposed model. The fate and transport of a trace metal pollutant, chromium, in marsh sediments were also simulated. Results of numerical simulations show that plant roots and tides significantly affect the chemical profiles of different electron acceptors, their reduced species and trace metals in marsh sediments.

Characteristics of mycelial growth and fruit body production in two strains of the genus Agrocybe ASI19003(A. cylindracea) and ASI19016(A. chaxingu) (볏짚버섯속 ASI1 9003(버들송이)과 ASI1 9016(차신고)의 배양 및 재배적 특성)

  • Cheong, Jong-Chun;Seok, Dong-Kwon;Kim, Seung-Hwan;Jhune, Chang-Sung;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.6 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • This experiment was carried out to examine physiological and cultural characteristics of two strains ASI 19003, 'Poplar field-cap mushroom' Agrocybe cylindracea, and ASI 19016, 'Chaxingo' A. chaxingu, at the bottle cultivation which have very similar morphological characteristics in genus Agrocybe. There was significant difference between the physiological and cultural characteristics of ASI19003 and ASI19016. The optimal temperature for the hyphal growth was $28^{\circ}C$ in the strain ASI19003 and $30^{\circ}C$ in ASI19016. The optimal pH was not different in two strains and these strains grew well at pH 5.5~7.0. But the optimal pH in the submerged culture was 5.5 in ASI19003 and 5.0 in ASI19016. Especially, hyphal growth of the strain ASI19016 was very poor at pH 6.0~7.3. The optimal carbon source for the growth was lactose in the strain ASI19003 and fructose in ASI19016, and nitrate sources were asparagine, alanine, and glycine in the strain ASI19003, and ammonium tartrate, asparagine, glycine, and alanine in ASI19016, respectively. The periods of incubation and fruiting body formation in the bottle cultivation during the spring were 27 and 13 days in the strain ASI19003, 29 and 17 days in ASI19016. The yields of fruit body were 114 g per bottle (850 $m{\ell}$ volume) in the strain ASI19003 and 100 g in ASI19016. In the summer, the periods of hyphal incubation and fruiting body formation were 29 and 11 days in the strain ASI19003, 30 and 12 days in ASI19016. The color of the cap in the ASI19003 strain according to temperature increase during the fruit body development become more pale, but the strain ASI19016 kept dark color relative to ASI19003. The fruiting body formation of the strain ASI19016 was faster than that of ASI19003. Accordingly, the cultivation of A. cylindracea ASI19003 during the spring, fall and winter, and A. chaxingu ASI19016 during the summer can keep high quality and stable supply all year round of these mushrooms.

  • PDF

Effects of Organic Matters Application with the Different Levels of Nitrogen Fertilizer over a 5 Year on the Soil Physico-Chemical Properties and Rice Yields (질수수준별(窒素水準別) 유기물연용(有機物連用)이 토양(土壤)의 이화학적(理化學的) 특성(特性)과 수도수량(水稻收量)에 미치는 영향(影響))

  • Lee, Chun-Hee;Lee, Han-Seng;Choi, Seung-Lack;Shin, Weon-Kyo;Lee, Ryu-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 1986
  • This study was conducted to determine the effects of 5 years continuous application of compost and rice straw with the different rates of nitrogen fertilizer on physico-chemical properties of paddy soils and yield of rice. The results obtained were as follows; 1. The yield of rice was 7 and 4% higher at straw and compost treatment compared to the non-application of organic matter. The rate of yield response for nitrogen fertilizer was lowered as the amount of nitrogen application increased under the condition of organic matter application. 2. Dry mayer weight and total nitrogen content of rice plants were increased in the order of straw > compost > non-application of organic matter. Above two factors were positive correlations with yield but total nitrogen content was negative correlation with ripening rate. 3. $NH_4-N$ in the soil was higher at plot applicated with compost and straw than non-application. It was positive correlation ($r=0.62^*-0.79^{**}$) with total nitrogen content in rice plants from 15 days after transplanting to heading stage. 4. The physical properties of soil, hardness and infilteration rate, after 5 years experiment, were improved in the order of straw > compost > non-application of organic matter. Organic matter content in the soil was decreased 0.1% on the straw treatment after 4 years, 0.1% on the compost after 3 and 4 years, and 0.1% on the non-application every years.

  • PDF