• Title/Summary/Keyword: 이두께오차

Search Result 4, Processing Time 0.018 seconds

Influence of Manufacturing and Assembly Errors on The Static Characteristics of Epicyclic Gear Trains (가공오차 및 조립오차가 유성기어열의 정특성에 미치는 영향)

  • Oh, Jae-Kook;Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1597-1606
    • /
    • 2003
  • Static analysis using hybrid finite element(FE) method has been applied to characterize the influence of position, runout and thickness errors of the sun, ring and planet on the bearing forces and critical tooth stress. Some guidelines for tolerance control to manage critical stress and bearing forces are deduced from the results. Carrier indexing error planet assembly and planet tooth thickness error are most critical to reduce planet bearing force and maximize load sharing as well as to reduce critical stresses. Sun and carrier bearing forces due to errors increase several times more than those of normal condition.

Influence of Ring Gear Boundary Conditions on the Static Characteristics of Epicyclic Gear Trains with Manufacturing Errors (링기어의 경계조건이 가공오차를 가지는 유성기어열의 정특성에 미치는 영향)

  • Cheon, Gill-Jeong;Oh, Jae-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1775-1780
    • /
    • 2003
  • A hybrid finite element analysis was used to analyze the influence of ring gear rim thickness and spline number on the static properties of an epicyclic gear system with manufacturing errors. Both of these parameters affected the bearing force and critical stress. The effect of changes in the rim thickness on the load sharing between the gears depended on the type of manufacturing error. Ring flexibility improved the load sharing between planetary gears only in systems with planet tooth thickness or planet tangential errors; for other types of error, ring flexibility worsened the load sharing. To improve load sharing, rim thickness and spline number should be controlled within a specific range. The effect of the ring gear boundary condition was more apparent in a system with errors than in a normal system.

  • PDF

Influence of Ring Gear Boundary Conditions on the Static Characteristics of Epicyclic Gear Trains with Manufacturing Errors (링기어의 경계조건이 가공오차를 가지는 유성기어열의 정특성에 미치는 영향)

  • Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1949-1957
    • /
    • 2003
  • A hybrid finite element analysis was used to analyze the influence of ring gear rim thickness and spline number on the static properties of a planetary gear system with manufacturing errors. Both of these parameters affected the bearing force and critical stress. The effect of changes in the rim thickness on the load sharing between the gears depended on the type of manufacturing error. Ring flexibility improved the load sharing between planetary gears only in systems with planet tooth thickness or planet tangential errors; for other types of error, ring flexibility worsened the load sharing. To improve load sharing, rim thickness and spline number should be controlled within a specific range. The minimum rim thickness limit should be determined considering not only the critical stress but also the load sharing. The effect of the ring gear boundary condition was more apparent in a system with errors than in a normal system.

An Experimental Study to Reduce the Fraction of Noise Defect of Hoist Gear Boxes (호이스트 기어박스의 소음불량률 저감을 위한 실험적 연구)

  • 이희원;손병진;신용하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1347-1354
    • /
    • 1994
  • This paper deals with the experimental research, including measurement and analysis and field survey, on the causes of occurring noise defective gear boxes in hoist production plant in order to reduce the fraction of their occurrence. In this reserch following investigations are performed : measurement and gear-boxes, examination of each machining process of production, measurement and analysis of dimensional accuracy of each part, comparative vibration test with exchanging inaccurate parts. From these investigations, it is found that the machining accuracy of pinion gear tooth thickness is the most sensitive factor of noise problem. By maintaining the tooth thickness error within 0.05 mm tolerance in the gear cutting process, the fraction of noise defective gear-boxes are greatly reduced to less than 2%, where the usual rate of it has been 20-50%.