• Title/Summary/Keyword: 이동 플랫폼

Search Result 801, Processing Time 0.026 seconds

Development of a New Prediction Alarm Algorithm Applicable to Pumped Storage Power Plant (양수발전 설비에 적용 가능한 새로운 고장 예측경보 알고리즘 개발)

  • Dae-Yeon Lee;Soo-Yong Park;Dong-Hyung Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.

Magnetic Cleanliness Algorithm for Satellite CAS500-3 (차세대 중형 3호의 Magnetic Cleanliness Algorithm)

  • Cheong Rim Choi;Tongnyeol Rhee;Seunguk Lee;Dooyoung Choi;Kwangsun Ryu
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.229-238
    • /
    • 2023
  • One of the important ways to improve the performance of magnetometers in satellite exploration is to reduce magnetic noise from satellites. One of the methods to decrease magnetic noise is by extending the satellite boom. However, this approach is often not preferred due to its high cost and operational considerations. Therefore, in many cases, removing interference from the satellite platform in the measured dataset is widely utilized after data acquisition. In this study, we would like to introduce an algorithm for removing magnetic noise observed from magnetometers installed on two solar panels and one main body without a boom.

Delay time Analysis of Asynchronous RIT Mode MAC in Wi-SUN (Wi-SUN에서 비동기 RIT모드 MAC의 지연시간 분석)

  • Dongwon Kim;Mi-Hee Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • In recent years, research on smart factory wireless mobile communication technology that wirelessly remotely controls utilities is being actively conducted. The Wi-SUN (Wireless Smart Utility Network) Alliance proposed a Wi-SUN protocol structure suitable for building a platform such as a smart factory as a new wireless communication standardization standard based on EEE802.15.4g/e. It analyzes the performance of the IEEE802.15.4e Receiver Initiated Transmission(RIT) Mode Media Access Control (MAC) in terms of throughput and latency, and looks at considerations for efficient operation. RIT mode shows that as the check interval becomes longer, delay time and throughput decrease. It was shown that as the traffic load increases, if the RIT check interval is shortened, the delay time can be shortened and throughput can be increased. RIT mode has the advantage of low power consumption and has neutral characteristics between IEEE802.15.4 and CSL mode in terms of delay time and throughput.

Development of a Digital Otoscope-Stethoscope Healthcare Platform for Telemedicine (비대면 원격진단을 위한 디지털 검이경 청진기 헬스케어 플랫폼 개발)

  • Su Young Choi;Hak Yi;Chanyong Park;Subin Joo;Ohwon Kwon;Dongkyu Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.109-117
    • /
    • 2024
  • We developed a device that integrates digital otoscope and stethoscope for telemedicine. The integrated device was utilized for the collection of tympanic membrane images and cardiac auscultation data. Data accumulated on the platform server can support real-time diagnosis of heart and eardrum diseases using artificial intelligence. Public data from Kaggle were used for deep learning. After comparing with various deep learning models, the MobileNetV2 model showed superior performance in analyzing tympanic membrane data, and the VGG16 model excelled in analyzing cardiac data. The classification algorithm achieved an accuracy of 89.9% for eardrums data and 100% for heart sound data. These results demonstrate the possibility of diagnosing diseases without the limitations of time and space by using this platform.

Operational Ship Monitoring Based on Multi-platforms (Satellite, UAV, HF Radar, AIS) (다중 플랫폼(위성, 무인기, AIS, HF 레이더)에 기반한 시나리오별 선박탐지 모니터링)

  • Kim, Sang-Wan;Kim, Donghan;Lee, Yoon-Kyung;Lee, Impyeong;Lee, Sangho;Kim, Junghoon;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.379-399
    • /
    • 2020
  • The detection of illegal ship is one of the key factors in building a marine surveillance system. Effective marine surveillance requires the means for continuous monitoring over a wide area. In this study, the possibility of ship detection monitoring based on satellite SAR, HF radar, UAV and AIS integration was investigated. Considering the characteristics of time and spatial resolution for each platform, the ship monitoring scenario consisted of a regular surveillance system using HFR data and AIS data, and an event monitoring system using satellites and UAVs. The regular surveillance system still has limitations in detecting a small ship and accuracy due to the low spatial resolution of HF radar data. However, the event monitoring system using satellite SAR data effectively detects illegal ships using AIS data, and the ship speed and heading direction estimated from SAR images or ship tracking information using HF radar data can be used as the main information for the transition to UAV monitoring. For the validation of monitoring scenario, a comprehensive field experiment was conducted from June 25 to June 26, 2019, at the west side of Hongwon Port in Seocheon. KOMPSAT-5 SAR images, UAV data, HF radar data and AIS data were successfully collected and analyzed by applying each developed algorithm. The developed system will be the basis for the regular and event ship monitoring scenarios as well as the visualization of data and analysis results collected from multiple platforms.

A Study on Social Security Platform and Non-face-to-face Care (사회보장플랫폼과 비대면 돌봄에 관한 고찰)

  • Jang, Bong-Seok;Kim, Young-mun;Kim, Yun-Duck
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.329-341
    • /
    • 2020
  • As COVID-19 pandemic sweeps across the world, more than 45 million confirmed cases and over 1,000,000 deaths have occurred till now, and this situation is expected to continue for some time. In particular, more than half of the infections in European countries such as Italy and Spain occurred in nursing homes, and it is reported that over 4,000 people died in nursing homes for older adults in the United States. Therefore, the issues that need to be addressed after the COVID-19 crisis include finding a fundamental solution to group care and shifting to family-centered care. More specifically, it is expected that there will be ever more lively discussion on establishing and expanding hyper-technology based community care, that is, family-centered care integrated with ICT and other Industry 4.0 technologies. This poses a challenge of how to combine social security and social welfare with Industry 4.0 in concrete ways that go beyond the abstract suggestions made in the past. A case in point is the proposal involving smart welfare cities. Given this background, the present paper examined the concept, scope, and content of non-face-to-face care in the context of previous literature on the function and scope of the social security platform, and the concept and expandability of the smart welfare city. Implementing a smart city to realize the kind of social security and welfare that our society seeks to provide has significant bearing on the implementation of community care or aging in place. One limitation of this paper, however, is that it does not address concrete measures for implementing non-face-to-face care from the policy and legal/institutional perspectives, and further studies are needed to explore such measures in the future. It is expected that the findings of this paper will provide the future course and vision not only for the smart welfare city but also for the social security and welfare system in administrative, practical, and legislative aspects, and ultimately contribute to improving the quality of human life.

Android Malware Detection Using Auto-Regressive Moving-Average Model (자기회귀 이동평균 모델을 이용한 안드로이드 악성코드 탐지 기법)

  • Kim, Hwan-Hee;Choi, Mi-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1551-1559
    • /
    • 2015
  • Recently, the performance of smart devices is almost similar to that of the existing PCs, thus the users of smart devices can perform similar works such as messengers, SNSs(Social Network Services), smart banking, etc. originally performed in PC environment using smart devices. Although the development of smart devices has led to positive impacts, it has caused negative changes such as an increase in security threat aimed at mobile environment. Specifically, the threats of mobile devices, such as leaking private information, generating unfair billing and performing DDoS(Distributed Denial of Service) attacks has continuously increased. Over 80% of the mobile devices use android platform, thus, the number of damage caused by mobile malware in android platform is also increasing. In this paper, we propose android based malware detection mechanism using time-series analysis, which is one of statistical-based detection methods.We use auto-regressive moving-average model which is extracting accurate predictive values based on existing data among time-series model. We also use fast and exact malware detection method by extracting possible malware data through Z-Score. We validate the proposed methods through the experiment results.

A study on improvement of ISO/IEC 29157 MAC protocol (ISO/IEC 29157 표준 MAC 프로토콜 개선 연구)

  • Cha, Bong-Sang;Jeong, Eui-Hoon;Jeon, Gwangil;Seo, Dae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.17-26
    • /
    • 2013
  • ISO/IEC 29157 originally developed in the Republic of Korea and is based on commercially available PicoCast v1.0. ISO/IEC JTC1 SC6 was registered by the international standard on May 2010. A single platform for a variety of applications and media formats to support development objectives were. ISO/IEC 29157 based wireless networks, ie, Pico-net to master node periodically transmit sync signal is synchronized to the number of slave nodes have the communications structure. Pico-net also supports a variety of network topologies and direct communication between nodes(single-hop communication) and QoS is guaranteed. But Pico-net network structure has the following problems. Loss of communication problems due to mobile nodes, resulting in limitations of node mobility and wireless network operation range of conventional wireless networks operating range less than 1/4 was reduced to the problem. In this paper, a possible solution to the problems mentioned is proposed, using multi-hop communication technology and sync signal transmission technology between nodes.

Internet-of-Things Based Approach for Monitoring Pharmaceutical Cold Chain (사물인터넷을 이용한 의약품 콜드체인 관리 시스템)

  • Chandra, Abel Avitesh;Back, Jong Sang;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.828-840
    • /
    • 2014
  • There is a new evolution in technological advancement taking place called the Internet of Things (IoT). The IoT enables physical world objects in our surroundings to be connected to the Internet. For this idea to come to life, two architectures are required: the Sensing Entity in the environment which collects data and connects to the cloud and the Cloud Service that hosts the data. In particular, the combination of wireless sensor network for sensing and cloud computing for managing sensor data is becoming a popular intervention for the IoT era. The pharmaceutical cold chain requires controlled environmental conditions for the sensitive products in order for them to maintain their potency and fit for consumption. The monitoring of distribution process is the only assurance that a process has been successfully validated. The distribution process is so critical that anomaly at any point will result in the process being no longer valid. Taking the cold chain monitoring to IoT and using its benefits and power will result in better management and product handling in the cold chain. In this paper, Arduino based wireless sensor network for storage and logistics (land and sea) is presented and integrated with Xively cloud service to offer a real-time and innovative solution for pharmaceutical cold chain monitoring.

3D Reconstruction of Pipe-type Underground Facility Based on Stereo Images and Reference Data (스테레오 영상과 기준데이터를 활용한 관로형 지하시설물 3차원 형상 복원)

  • Cheon, Jangwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1515-1526
    • /
    • 2022
  • Image-based 3D reconstruction is to restore the shape and color of real-world objects, and image sensors mounted on mobile platforms are used for positioning and mapping purposes in indoor and outdoor environments. Due to the increase in accidents in underground space, the location accuracy problem of underground spatial information has been raised. Image-based location estimation studies have been conducted with the advantage of being able to determine the 3D location and simultaneously identify internal damage from image data acquired from the inside of pipeline-type underground facilities. In this study, we studied 3D reconstruction based on the images acquired inside the pipe-type underground facility and reference data. An unmanned mobile system equipped with a stereo camera was used to acquire data and image data within a pipe-type underground facility where reference data were placed at the entrance and exit. Using the acquired image and reference data, the pipe-type underground facility is reconstructed to a geo-referenced 3D shape. The accuracy of the 3D reconstruction result was verified by location and length. It was confirmed that the location was determined with an accuracy of 20 to 60 cm and the length was estimated with an accuracy of about 20 cm. Using the image-based 3D reconstruction method, the position and line-shape of the pipe-type underground facility will be effectively updated.