• Title/Summary/Keyword: 이동 통신

Search Result 9,812, Processing Time 0.028 seconds

Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support Systems (인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축)

  • Seung-seob Kim;Dong Ho Lee;Min Woo Lee;So Yeon Kim;Jaeseung Shin;Jin‑Young Choi;Byoung Wook Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1196-1206
    • /
    • 2021
  • Purpose To construct a standard dataset of contrast-enhanced CT images of liver tumors to test the performance and safety of artificial intelligence (AI)-based algorithms for clinical decision support systems (CDSSs). Materials and Methods A consensus group of medical experts in gastrointestinal radiology from four national tertiary institutions discussed the conditions to be included in a standard dataset. Seventy-five cases of hepatocellular carcinoma, 75 cases of metastasis, and 30-50 cases of benign lesions were retrieved from each institution, and the final dataset consisted of 300 cases of hepatocellular carcinoma, 300 cases of metastasis, and 183 cases of benign lesions. Only pathologically confirmed cases of hepatocellular carcinomas and metastases were enrolled. The medical experts retrieved the medical records of the patients and manually labeled the CT images. The CT images were saved as Digital Imaging and Communications in Medicine (DICOM) files. Results The medical experts in gastrointestinal radiology constructed the standard dataset of contrast-enhanced CT images for 783 cases of liver tumors. The performance and safety of the AI algorithm can be evaluated by calculating the sensitivity and specificity for detecting and characterizing the lesions. Conclusion The constructed standard dataset can be utilized for evaluating the machine-learning-based AI algorithm for CDSS.

An Expert System for the Estimation of the Growth Curve Parameters of New Markets (신규시장 성장모형의 모수 추정을 위한 전문가 시스템)

  • Lee, Dongwon;Jung, Yeojin;Jung, Jaekwon;Park, Dohyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.17-35
    • /
    • 2015
  • Demand forecasting is the activity of estimating the quantity of a product or service that consumers will purchase for a certain period of time. Developing precise forecasting models are considered important since corporates can make strategic decisions on new markets based on future demand estimated by the models. Many studies have developed market growth curve models, such as Bass, Logistic, Gompertz models, which estimate future demand when a market is in its early stage. Among the models, Bass model, which explains the demand from two types of adopters, innovators and imitators, has been widely used in forecasting. Such models require sufficient demand observations to ensure qualified results. In the beginning of a new market, however, observations are not sufficient for the models to precisely estimate the market's future demand. For this reason, as an alternative, demands guessed from those of most adjacent markets are often used as references in such cases. Reference markets can be those whose products are developed with the same categorical technologies. A market's demand may be expected to have the similar pattern with that of a reference market in case the adoption pattern of a product in the market is determined mainly by the technology related to the product. However, such processes may not always ensure pleasing results because the similarity between markets depends on intuition and/or experience. There are two major drawbacks that human experts cannot effectively handle in this approach. One is the abundance of candidate reference markets to consider, and the other is the difficulty in calculating the similarity between markets. First, there can be too many markets to consider in selecting reference markets. Mostly, markets in the same category in an industrial hierarchy can be reference markets because they are usually based on the similar technologies. However, markets can be classified into different categories even if they are based on the same generic technologies. Therefore, markets in other categories also need to be considered as potential candidates. Next, even domain experts cannot consistently calculate the similarity between markets with their own qualitative standards. The inconsistency implies missing adjacent reference markets, which may lead to the imprecise estimation of future demand. Even though there are no missing reference markets, the new market's parameters can be hardly estimated from the reference markets without quantitative standards. For this reason, this study proposes a case-based expert system that helps experts overcome the drawbacks in discovering referential markets. First, this study proposes the use of Euclidean distance measure to calculate the similarity between markets. Based on their similarities, markets are grouped into clusters. Then, missing markets with the characteristics of the cluster are searched for. Potential candidate reference markets are extracted and recommended to users. After the iteration of these steps, definite reference markets are determined according to the user's selection among those candidates. Then, finally, the new market's parameters are estimated from the reference markets. For this procedure, two techniques are used in the model. One is clustering data mining technique, and the other content-based filtering of recommender systems. The proposed system implemented with those techniques can determine the most adjacent markets based on whether a user accepts candidate markets. Experiments were conducted to validate the usefulness of the system with five ICT experts involved. In the experiments, the experts were given the list of 16 ICT markets whose parameters to be estimated. For each of the markets, the experts estimated its parameters of growth curve models with intuition at first, and then with the system. The comparison of the experiments results show that the estimated parameters are closer when they use the system in comparison with the results when they guessed them without the system.