• Title/Summary/Keyword: 이동평균구간 분석 방법

Search Result 33, Processing Time 0.021 seconds

A STUDY ABOUT ALVEOLAR CREST BONE HEIGHT BEFORE AND AFTER ORTHODONTIC TREATMENT BY USING BITEWING FILM (교익사진을 이용한 교정치료 전후의 치조골 높이 변화에 관한 연구)

  • Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.421-430
    • /
    • 1997
  • Alveolar bone grows with development of tooth germs and roots; bone deposition occurs with tooth eruption. Bone components undergoes processes of resorption and deposition, and when the balance between them is disrupted, decrease in alveolar bone height or excessive bone deposition result. It has been hon that repositioning of teeth through orthodontic treatment can cause alveolar bone resorption which result in decreased alveolar bone height, and there have been many studies to evaluate such effects. X-ray films that could be replicated and standardized were chosen in clinical studies, and among them, bitewing films were used for objective evaluation of changes in alveolar bone level. Twenty subjects, 10 to 13-year- old (average 12.2) children with Cl I molar key, healthy oral condition, no congenital missing, no periodontal disease, and pre-and post-orthodontic bitewing films, were randomly selected for comparison of alveolar bone heights. Amounts of tooth and changes in alveolar bone heights were analyzed. The following results were obtained: 1. Amount of tooth movement in canine, premolar, and molar regions, changes in tooth axis, and changes in alveolar bone heights were measured, and the mean and median values were obtained. 2. When pre-and post-orthodontic alveolar bone levels were compared, larger changes were noticed in maxilla than mandible. 3. When mesio-distally compared, larger changes were observed in the distal sides of 3D3 and 4M3, mesial sides of 4M3 and 4D3, distal sides of 4D3 and 5M3, mesial sides of 5M3 and 5D3, md distal sides of 5D3 and 6M3. 4. When the amounts of tooth movements(TX, TY)and changes in tooth axis(A) were compared,34TX, 34TY, 34A of both sides in maxilla were greater, iud changes in alveolar bone level were greater than any other region.

  • PDF

The Accuracy Evaluation according to Dose Delivery Interruption and Restart for Volumetric Modulated Arc Therapy (용적변조회전 방사선치료에서 선량전달의 중단 및 재시작에 따른 정확성 평가)

  • Lee, Dong Hyung;Bae, Sun Myung;Kwak, Jung Won;Kang, Tae Young;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • Purpose: The accurate movement of gantry rotation, collimator and correct application of dose rate are very important to approach the successful performance of Volumetric Modulated Arc Therapy (VMAT), because it is tightly interlocked with a complex treatment plan. The interruption and restart of dose delivery, however, are able to occur on treatment by various factors of a treatment machine and treatment plan. If unexpected problems of a treat machine or a patient interrupt the VMAT, the movement of treatment machine for delivering the remaining dose will be restarted at the start point. In this investigation, We would like to know the effect of interruptions and restart regarding dose delivery at VMAT. Materials and Methods: Treatment plans of 10 patients who had been treated at our center were used to measure and compare the dose distribution of each VMAT after converting to a form of digital image and communications in Medicine (DICOM) with treatment planning system (Eclipse V 10.0, Varian, USA). We selected the 6 MV photon energy of Trilogy (Varian, USA) and used OmniPro I'mRT system (V 1.7b, IBA dosimetry, Germany) to analyze the data that were acquired through this measurement with two types of interruptions four times for each case. The door interlock and the beam-off were used to stop and then to restart the dose delivery of VMAT. The gamma index in OmniPro I'mRT system and T-test in Microsoft Excel 2007 were used to evaluate the result of this investigation. Results: The deviations of average gamma index in cases with door interlock, beam-off and without interruption on VMAT are 0.141, 0.128 and 0.1. The standard deviations of acquired gamma values are 0.099, 0.091, 0.071 and The maximum gamma value in each case is 0.413, 0.379, 0.286, respectively. This analysis has a 95-percent confidence level and the P-value of T-test is under 0.05. Gamma pass rate (3%, 3 mm) is acceptable in all of measurements. Conclusion: As a result, We could make sure that the interruption of this investgation are not enough to seriously affect dose delivery of VMAT by analyzing the measured data. But this investigation did not reflect all cases about interruptions and errors regarding the movement of a gantry rotation, collimator and patient So, We should continuously maintain a treatment machine and program to deliver the accurate dose when we perform the VMAT for the many kinds of cancer patients.

  • PDF

Effects of Motion Correction for Dynamic $[^{11}C]Raclopride$ Brain PET Data on the Evaluation of Endogenous Dopamine Release in Striatum (동적 $[^{11}C]Raclopride$ 뇌 PET의 움직임 보정이 선조체 내인성 도파민 유리 정량화에 미치는 영향)

  • Lee, Jae-Sung;Kim, Yu-Kyeong;Cho, Sang-Soo;Choe, Yearn-Seong;Kang, Eun-Joo;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.413-420
    • /
    • 2005
  • Purpose: Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head mutton correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. Materials and Methods: $[^{11}C]raclopride$ PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task: 110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Results: Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction and such changes were prominent in periphery of the striatum. Conclusion: The results suggest that misalignment of MRI-based VOI and the striatum in PET images and incorrect DAR estimation due to the head motion during the PET activation study were significant, but could be remedied by the data-driven head motion correction.