• Title/Summary/Keyword: 이동제한장치

Search Result 202, Processing Time 0.02 seconds

Determination and Monitoring of Grayanotoxins in Honey Using LC-MS/MS (LC-MS/MS를 이용한 벌꿀 중 grayanotoxin 분석법 연구 및 실태조사)

  • Lee, Sook-Yeon;Choi, Youn-Ju;Lee, Kang-Bong;Cho, Tae-Yong;Kim, Jin-Sook;Son, Young-Wook;Park, Jae-Seok;Im, Sung-Im;Choi, Hee-Jung;Lee, Dong-Ha
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • This study was performed to establish analysis methods, and evaluated for grayanotoxin in domestic/foreign honey and wild honey. The molecular weight of grayanotoxins I, II and III, excluding grayanotoxin III that has been commercialized, were analyzed by LC-MS/MS. Then, the molecular structure of grayanotoxins I and II were analyzed by NMR. A total 111 samples (25 Korean honey, 21 Korean wild honey, 13 Korean honeycomb honey, 44 foreign honey, 8 foreign wild honey) were examined to determined whether or not each sample contained grayanotoxins I, II, and III. The honey samples were mixed with methanol and loaded into a tC18 cartridge, the filtrate was diluted with water, and the mixture was then analyzed by ESI triple-quadrupole LC-MS/MS. Grayanotoxins were only found in the foreign wild honey and were not detected in Korean honey, Korean honeycomb honey, or Korean wild honey. Three of the samples contained grayanotoxin I, II, and III, and one sample contained only grayanotoxins I and III. The lowest level for grayanotoxin I was 3.13 ${\pm}$ 0.00 mg/kg, and the highest level was 12.93 ${\pm}$ 0.01 mg/kg. The levels of grayanotoxin II were 0.84 ${\pm}$ 0.01 mg/kg, 0.92 ${\pm}$ 0.00 mg/kg and 1.08 ${\pm}$ 0.01 mg/kg, respectively. The lowest level of grayanotoxin III was 0.25 ${\pm}$ 0.01 mg/kg and the highest level was 3.29 ${\pm}$ 0.74 mg/kg. Through this study, safety management for foreign wild honey has been enabled.

Analysis of dose reduction of surrounding patients in Portable X-ray (Portable X-ray 검사 시 주변 환자 피폭선량 감소 방안 연구)

  • Choe, Deayeon;Ko, Seongjin;Kang, Sesik;Kim, Changsoo;Kim, Junghoon;Kim, Donghyun;Choe, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Nowadays, the medical system towards patients changes into the medical services. As the human rights are improved and the capitalism is enlarged, the rights and needs of patients are gradually increasing. Also, based on this change, several systems in hospitals are revised according to the convenience and needs of patients. Thus, the cases of mobile portable among examinations are getting augmented. Because the number of mobile portable examinations in patient's room, intensive care unit, operating room and recovery room increases, neighboring patients are unnecessarily exposed to radiation so that the examination is legally regulated. Hospitals have to specify that "In case that the examination is taken out of the operating room, emergency room or intensive care units, the portable medical X-ray protective blocks should be set" in accordance with the standards of radiation protective facility in diagnostic radiological system. Some keep this regulation well, but mostly they do not keep. In this study, we shielded around the Collimator where the radiation is detected and then checked the change of dose regarding that of angles in portable tube and collimator before and after shielding. Moreover, we tried to figure out the effects of shielding on dose according to the distance change between patients' beds. As a result, the neighboring areas around the collimator are affected by the shielding. After shielding, the radiation is blocked 20% more than doing nothing. When doing the portable examination, the exposure doses are increased $0^{\circ}C$, $90^{\circ}C$ and $45^{\circ}C$ in order. At the time when the angle is set, the change of doses around the collimator decline after shielding. In addition, the exposure doses related to the distance of beds are less at 1m than 0.5m. In consideration of the shielding effects, putting the beds as far as possible is the best way to block the radiation, which is close to 100%. Next thing is shielding the collimator and its effect is about 20%, and it is more or less 10% by controlling the angles. When taking the portable examination, it is better to keep the patients and guardians far enough away to reduce the exposure doses. However, in case that the bed is fixed and the patient cannot move, it is suggested to shield around the collimator. Furthermore, $90^{\circ}C$ of collimator and tube is recommended. If it is not possible, the examination should be taken at $0^{\circ}C$ and $45^{\circ}C$ is better to be disallowed. The radiation-related workers should be aware of above results, and apply them to themselves in practice. Also, it is recommended to carry out researches and try hard to figure out the ways of reducing the exposure doses and shielding the radiation effectively.