• 제목/요약/키워드: 이동객체 추출

검색결과 181건 처리시간 0.015초

KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류 (Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery)

  • 박채원;정형섭;이원진;이광재;오관영;장재영;이명진
    • 대한원격탐사학회지
    • /
    • 제39권6_3호
    • /
    • pp.1679-1692
    • /
    • 2023
  • 대한민국은 인구 증가와 산업 발전의 결과로 많은 양의 오염물질을 배출하는 국가이자, 지리적 위치로 인해 월경성 대기오염의 심각한 영향을 받는 국가이다. 국내외에서 발생하는 오염물질이 대한민국의 대기오염에 큰 피해를 야기하는 상황에서, 대기 오염물질 배출원의 위치 정보는 대기 중 오염물질의 이동 및 분포를 파악하고, 국가 차원의 대기오염 관리 및 대응 전략을 수립하는 데 매우 중요하다. 본 연구는 이러한 배경을 바탕으로, 고해상도 광학위성 영상과 딥러닝 기반의 영상 분할 모델을 활용하여 대기오염 현황을 분석하는 데 필수적인 국내외 대기오염물질 배출원의 공간 정보를 효과적으로 획득하는 것을 목표로 수행되었다. 특히, 월경성 대기오염에 크게 기여하는 것으로 평가된 산업단지와 채석장을 주요 연구 대상으로 선정하였으며, 이들 영역에 대한 다목적실용위성 3호 및 3A호의 영상들을 수집하여 전처리한 후, 모델 학습을 위한 입력 및 라벨 데이터로 변환하였다. 해당 데이터를 활용하여 U-Net 모델을 학습시킨 결과, 전체 정확도는 0.8484, mean Intersection over Union (mIoU)은 0.6490을 달성하였다. 모델의 예측 결과 맵은 코스 어노테이션(Course Annotation) 방식으로 제작된 라벨 데이터보다 객체의 경계를 더욱 정확하게 추출하는 것으로 나타나, 데이터 처리 및 모델 학습 방법론의 유효성을 입증하였다.