최근 기존 전시 공간 내에 유비쿼터스 환경이 구축되면서, 관객과의 상호작용을 통해 전시 효과를 배가할 수 있는 인터랙티브 전시에 많은 사람들의 관심이 집중되고 있다. 이러한 인터랙티브 전시가 보다 고도화되기 위해서는 전시물에 대한 다양한 관객 반응을 측정하고, 이를 통해 대상 관객이 어떤 감정을 느끼는지 예측할 수 있는 적절한 의사결정지원 모형이 요구된다. 이러한 배경에서 본 연구는 인터랙티브 전시 공간 내에서 수집 가능한 다양한 관객 반응 중 얼굴표정의 변화를 이용하여, 관객의 감정을 추론, 판단하는 지능형 모형을 제시한다. 본 연구에서 제시하는 모형은 무자극 상태의 관객의 표정과 자극이 주어졌을 때 관객의 표정이 어떻게 변화하는지 변화량을 측정하여, 이를 기반으로 인공신경망 기법을 이용해 해당 관객의 감정을 판단하는 모형이다. 이 때, 제안모형의 감정 분류체계로는 간결하면서도 실무에 적용이 용이하여 그간 기존 문헌에서 널리 활용되어 온 매력-각성(Valence-Arousal) 모형을 사용한다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 2011 서울 DMC 컬쳐 오픈 행사에 참여하여, 일반인을 대상으로 얼굴 표정 변화 데이터를 수집하고, 이들이 느끼는 감정 상태를 설문조사하였다. 그리고 나서, 이 자료들을 대상으로 본 연구에서 제안하는 모형을 적용해 보고, 제안모형이 비교모형으로 설정된 통계기반 예측모형에 비해 더 우수한 성과를 보이는지 확인해 보았다. 실험 결과, 본 연구에서 제시하는 모형이 비교 모형인 중회귀분석 모형보다 더 우수한 결과를 제공함을 확인할 수 있었다. 본 연구를 통하여 구축된 관객 감정 판단 모형을 실제 전시장에서 활용한다면 전시물을 관람하는 관객의 반응에 따라 시의적절하면서도 효과적인 대응이 가능하기 때문에, 관객의 몰입과 만족을 보다 증대시킬 수 있을 것으로 기대된다.
온라인과 오프라인의 경계가 사라지면서 O2O(온라인에서 오프라인으로) 서비스가 급속히 증가하고 있다. 일반 제품과 달리 농식품은 신선도가 중요한 의사결정 요인이며, 다름 품목에 비해 환불 및 교환이 어려운 특성과 새로운 거래 방식으로 인해 O2O의 플랫폼 중 오픈 마켓으로 성장하는데 제한적인 요소가 많다. 이러한 장애를 극복하기 위해서는 소비자의 혁신성이 고려되어야 한다. 본 연구는 O2O(online to offline) 특성 중 빠르게 성장하고 있는 오픈 마켓을 중심으로 쇼핑몰 특성이 농식품 재구매 의도에 미치는 영향을 파악하는데 목적이 있다. 그리고 농식품 쇼핑몰 특성과 재구매 의도에 미치는 영향력에서 혁신성의 조절 효과를 분석하고자 한다. 이를 위해 편의표본추출기법을 이용하여 2021년 3월 1일부터 3월 30일까지 구글 설문을 통해 온라인 설문을 실시하였다. 농식품 오픈 마켓에서 구매경험자 총 270개의 분석 자료를 수집하였다. 분석방법은 spss 프로그램을 사용하였으며, 가설검증을 위해 다중회귀분석을 사용하였다. 분석결과 O2O(online to offline) 쇼핑몰 특성인 경제성, 상호작용성, 유희성은 농식품 재구매 의도에 유의한 정(+)의 영향을 미치는 것으로 나타났다. 상호작용성×혁신성, 유희성×혁신성은 재구매 의도에 유의한 정(+)의 영향을 미치는 것으로 나타났다. 본 연구결과 혁신성은 새로운 시스템이나 모바일 거래에 대하여 소비자의 부담을 줄여주고 있음을 알 수 있다. 본 연구의 결과를 통해서 농식품의 O2O 거래 활성화를 위해서는 혁신성이 낮은 소비자들의 거래를 활성화하기 위한 편리한 인터페이스 설계가 중요하다고 할 수 있다. 더불어 농업인들의 IT 역량강화를 위한 교육과 지원이 필요하다. 본 연구의 결과는 농식품 오픈마켓 쇼핑몰의 인프라 구축 등에 기여할 수 있을 것이다.
최근 코로나19 팬데믹으로 인해 전 세계 경제와 외교 상황에 급격한 변화가 일어나고 있으며, 수출 의존도가 높은 한국은 이러한 변화에 큰 영향을 받고 있다. 본 연구에서는 기업의 수출전략 수립 및 의사결정 지원을 위해 차년도 수출액 예측 모델을 구축하고, 모델의 예측 결과를 바탕으로 수출 유망국가 추천 방식을 제안한다. 본 연구에서는 모델이 다양한 정보를 학습할 수 있도록 국가별, 품목별, 거시경제 변수 등 선행 연구에서 중요하게 사용된 변수를 다방면으로 수집하였다. 수집한 데이터를 분석한 결과, 국가와 품목에 따라서 수출액의 분포가 매우 비대칭적인 것을 확인할 수 있었다. 따라서, 모델의 예측 성능을 향상시키고 설명력을 확보하기 위해서 분리학습 방식을 사용하였다. 분리학습은 전체 데이터를 동질적인 하위 그룹으로 분리하고 개별 모델을 구축하는 방식으로, 본 연구에서는 수출액을 기준으로 5개 구간으로 데이터를 분리하였다. 모델 학습 과정에서 구간별 특성을 반영하여 구간1부터 구간4까지는 LightGBM을 사용하고, 구간5는 지수이동평균을 사용하였으며 이를 통해 모델의 예측 성능을 향상시킬 수 있었다. 모델의 설명력 확보를 위해서 추가로 구간별 모델의 SHAP-value를 계산하고 중요도가 높은 변수를 제시했다. 또한, 본 연구에서는 예측 모델을 기반으로 2단계 수출 유망국가 추천 방식을 제안했다. 효율적인 수출 전략 수립을 위해서 BCG 매트릭스와 국가별 점수 산출 방식을 사용하였고, 품목별 유망 국가 순위와 수출 관련 주요 정보들을 제공하였다. 본 연구는 다양한 정보를 학습한 머신러닝 모델로 여러 국가와 품목에 대한 예측을 실시하고, 이 과정에서 분리학습 방식으로 예측 성능을 향상시켰다는 점에서 의의가 있다. 또한, 현재 무역 관련 서비스들이 과거 데이터에 기반한 정보를 제공하고 있음을 고려할 때, 본 연구에서 제안한 예측 모델과 유망국가 추천 방식은 기업들의 미래 수출 전략 수립 및 동향 파악에 유용하게 사용될 수 있을 것으로 기대된다.
COVID-19 팬데믹의 확산은 마스크를 일상생활에서의 필수품으로 변화시켰으며, 마스크에 대한 대중의 인식과 행동에 큰 변화를 일으켰다. 마스크 착용 의무의 완화가 진행되고 있는 가운데, 여전히 많은 사람들이 마스크 착용을 유지하며, 마스크를 개인의 개성과 정체성을 표현하는 패션 수단으로 활용하는 추세가 나타나고 있다. 그러나 마스크와 관련된 기존 연구는 주로 마스크의 감염 예방 효과나 팬데믹 상황에서의 채택 태도를 탐구하는 등 제한된 분야에 국한되어 있어, 마스크 디자인에 대한 소비자 선호도를 이해하기 위한 연구의 필요성이 대두되고 있다. 본 연구는 마스크의 접이 방식에 따라 마스크 디자인을 수평 접이형 마스크와 수직 접이형 마스크 두 가지 유형으로 구분하고, 각각의 디자인에 대한 소비자 지각과 선호도를 설문 및 시선 추적 방법론을 활용하여 조사하였다. 소비자 설문에 대한 T 검정을 수행한 결과, 수직 접이형 마스크가 수평 접이형 마스크 대비 소비자에게 선호되며, 독특성, 세련미, 입체감, 생동감이 높게 평가되는 경향이 나타났다. 이후, 수직 접이형 마스크가 매력적으로 인식되는 원인을 실증적으로 이해하기 위해 각 마스크 디자인에 대한 아이트래킹 분석을 수행하고, 마스크 디자인 별 시선 패턴의 차이를 도출하였다. 본 연구는 마스크 관련 연구의 범위를 감염 예방 효과 검증 등의 제한적인 영역에서 나아가, 소비자의 디자인 지각 및 평가 영역까지 확장한 점, 마스크의 접이 방식이라는 디자인 요소가 소비자의 지각, 태도 및 생리적 반응에 미치는 잠재적 영향력을 설명하고자 한 점에서 이론적인 공헌이 있으며, 소비자에게 선호되는 마스크 디자인을 위한 의사결정을 지원할 수 있다는 측면에서 실무적인 함의가 있다.
기업 의사 결정 지원을 위하여 거래 데이터를 다양한 관점에서 분석하고 활용하려는 노력과 관심들이 증가하고 있다. 이러한 노력들은 고객 관리나 마케팅에만 국한되는 것이 아니라 부정행위에 대한 감시와 탐지를 목적으로도 다양한 분석 방안들이 연구되고 있다. 부정행위는 기술의 발전을 악용하여 다양한 형태로 진화하고 있으며, 이에 따라 목적에 맞는 부정탐지 방안 연구와 적용을 통하여 탐지 효용의 극대화를 위한 노력의 필요성이 증가하고 있다. 이러한 연구 동향의 일환으로 본 연구에서는 대용량 거래 데이터가 저장 관리되고 있는 국내 최대 농수산물 유통 시장의 2008년부터 2010년까지 상장예외품목의 거래 가격을 분석하여 부정 탐지 규칙을 도출하였으며, 전문가 검증을 통하여 도출 된 규칙의 신뢰성을 확보하였다. 본 연구의 주요 부정거래 분석 방안으로는 정상적인 데이터들은 발생 확률이 높은 반면에 특이한 데이터들의 발생 확률은 낮다고 가정하는 통계적 접근을 통한 이상치 식별 방안을 활용하였다. 이에 따라 부정거래 분석 별로 정의 된 Z-Score 값보다 클 경우 부정거래 탐지 대상이 된다. 다만 상장예외품목 거래의 경우 취급 가능한 중도매인의 수가 제한되어 있으며, 일반적인 상장품목의 거래보다 거래량이 적기 때문에 소수의 이상치가 품목의 평균에 미치는 영향이 크다. 그 예로 다른 소수의 중도매인들이 해당 품목을 정상적인 가격에 거래하였더라도, 특정한 중도매인 한 명이 지나치게 비정상적인 가격에 거래할 경우 모든 거래들이 부정거래로 탐지 될 가능성도 있다. 이러한 문제를 해결하기 위하여 기존의 Z-Score의 개념을 활용하여 수정된 Z-Score(Self-Eliminated Z-Score)를 사용하였다. 또한 부정 유형별 탐지 규칙 관리와 활용을 위한 시스템 프로토타입(prototype) 개발을 수행하였다. 이를 통하여 실제 부정거래 탐지 업무에 적용할 수 있는 효과적인 방안을 제시하였고, 농수산 유통시장의 공정성 및 투명성 확보를 위한 관리 감독의 기능 강화가 가능할 것이다.
최근 IT기술의 발전에 따라 많은 사람들이 자신들의 여가활동에 대한 경험을 공유하고 있으며, 역으로 다른 사람들의 여가활동에 대한 경험을 참고하여 더 나은 여가활동을 누릴 수 있는 기회를 얻게 되었다. 이러한 현상은 영화, 숙박, 음식, 여행 등 여가활동 전반에 걸쳐 나타나고 있으며, 그 중심에는 여가활동에 대한 정보를 요약하여 제공하는 수많은 사이트가 있다. 대부분의 여가활동 정보 사이트는 각 상품에 대한 평균 평점뿐만 아니라 상세 리뷰를 제공함으로써, 해당 상품을 구매하고자 하는 잠재고객의 의사결정을 지원하고 있다. 하지만 기존 대부분의 사이트는 한 단계의 평가기준에 따라 평점과 리뷰를 제공하기 때문에, 각 평가기준을 구성하는 세부요소에 대한 특징과 평가기준 별 주요 이슈를 파악하기 위해서는 상당히 많은 수의 리뷰를 직접 읽어야 한다는 불편이 따른다. 즉 사용자는 자신이 중요한 것으로 생각하는 평가기준에 대한 조건을 파악하기 위해, 많은 수의 리뷰를 하나하나 읽어보는 과정에서 많은 시간과 노력을 소비하게 된다. 예를 들어 호텔의 접근성, 객실, 서비스, 음식 등 한 단계의 평가기준만을 사용하여 평점과 리뷰를 제공하는 사이트의 경우, 접근성 중 특히 지하철역과의 거리, 객실 중 특히 욕실의 상태를 살펴보고자 하는 사용자에게 필요한 정보를 충분히 제공하지 못하게 된다. 따라서 본 연구에서는 기존 여가활동 정보 사이트의 한계, 즉 평가기준별로 입력된 리뷰를 신뢰하기 어렵다는 점과 평가기준을 구성하고 있는 세부 내용을 파악하기 어렵다는 점을 극복하기 위한 방안을 제시하고자 한다. 본 연구에서 제안하는 방법론은 사용자가 별도의 구분 없이 입력한 리뷰를 그 내용에 따라 평가기준별로 자동 분류하고, 각 평가 기준 별 주요 이슈를 요약하여 제공한다. 제안 방법론은 최근 텍스트 분석에 활발하게 사용되고 있는 토픽 모델링(Topic Modeling)에 기반을 두고 있으며, 각 리뷰를 하나의 문서 단위로 사용하는 것이 아니라 리뷰를 문장 단위로 끊어 개별 리뷰 유닛(Review Unit)으로 분해한 뒤, 평가기준별로 리뷰 유닛을 재구성하여 분석한다는 측면에서 기존의 토픽 모델링 기반 연구와 큰 차이가 있다고 할 수 있다. 본 논문에서는 제안 방법론을 실제 호텔 정보 사이트에서 수집한 423건의 리뷰 문서에 적용하여 6가지 평가기준에 대해 총 4,860건의 리뷰 유닛을 재구성하고, 이에 대한 분석 결과를 소개함으로써 제안 방법론의 유용성을 간접적으로 보인다.
최근 인간과 상호작용할 수 있는 '소셜로봇'을 활용하여 복잡하고 다양한 사회문제를 해소하고 개인의 삶의 질을 제고하려는 시도가 주목받고 있다. 과거 로봇은 인간을 대신해서 산업 현장에 투입되고 노동력을 제공해주는 존재로 인식되었다. 그러나 오늘날의 로봇은 각종 산업분야를 관통하는 핵심 키워드인 'Smart'의 등장을 기점으로 인간과 함께 공존하며 사회적 교감이 가능한 '소셜로봇(Social Robot)'으로 그 개념이 확장되고 있다. 구체적으로 고객을 응대하는 서비스 로봇, 에듀테인먼트(Edutainment) 성격의 로봇, 그리고 인간과의 교감, 상호작용에 주목한 감성로봇 등이 출시되고 있다. 그러나 4차 산업혁명을 계기로 ICT 서비스 환경이 급격한 발전을 이룬 현재까지 소셜로봇의 대중화는 체감되지 않고 있다. 소셜로봇의 핵심 기능이 사용자와의 사회적 교감임을 고려하면, 소셜로봇의 대중화를 촉진하기 위해서는 기기에 적용되는 기술 이외의 요소들도 중요하게 고려할 필요가 있다. 본 연구는 로봇의 디자인 요소가 소셜로봇에 대한 소비자들의 구매를 이끌어내는데 중요하게 작용할 것으로 판단한다. 로봇의 외형이 유발하는 감성은 사용자의 인지, 추론, 평가와 기대를 형성하는 과정에서 중요한 영향을 미치며 나아가 로봇에 대한 태도와 호감 그리고 성능 추론 등에도 영향을 줄 수 있다. 그러나 소셜로봇에 대한 기존 연구들은 로봇의 개발방법론을 제안하거나, 소셜로봇이 사용자에게 제공하는 효과를 단편적으로 검증하는 수준에 머무르고 있다. 따라서 본 연구는 소셜로봇의 외형으로부터 사용자가 느끼는 감성이 소셜로봇에 대한 사용자의 태도에 미치는 영향을 검증해보고자 한다. 이때 서로 다른 출처의 이종 데이터 간 결합을 통하여 소셜로봇 디자인평가 모형을 구성한다. 구체적으로 소셜로봇의 외형에 대하여 사전에 구축된 ABOT Database로부터 다수의 소셜로봇에 대한 세 가지 정량적 지표 데이터를 확보하였다. 소셜로봇의 디자인 감성은 (1) 기존의 디자인평가 문헌과 (2) 소셜로봇 제품 후기와 블로그 등의 온라인 구전, (3) 소셜로봇 디자인에 대한 정성적인 인터뷰를 통해 도출하였다. 이후 사용자 설문을 통하여 각각의 소셜로봇에 대해 사용자가 느끼는 감성과 태도에 대한 평가를 수집하였다. 세부적인 감성 평가항목 23개에 대하여, 차원 축소 방법론을 통해 6개의 감성 차원을 도출하였다. 이어서 도출된 감성 차원들이 사용자의 소셜로봇에 대한 태도에 미치는 영향을 검증하기 위해 회귀분석을 수행하여 감성과 태도 간의 관계를 파악해 보았다. 마지막으로 정량적으로 수집된 소셜로봇의 외형에 대한 지표가 감성과 태도 간의 관계에 영향을 줄 수 있음을 검증하기 위해 조절회귀분석을 수행하였다. 기술적인ABOT Database 속성 지표들과 감성 차원들 간의 순수조절효과를 확인하고, 도출된 조절효과에 대한 시각화를 수행하여 외형, 감성, 그리고 태도 간의 관계를 다각적인 관점에서 해석하였다. 본 연구는 이종간 데이터를 연결하여 소셜로봇의 기술적 속성과 소비자 감성, 태도까지 변수 간 관계를 총체적으로 실증 분석했다는 점에서 이론적 공헌을 가지며, 소셜로봇 디자인 개발 전략에 대한 의사결정을 지원하기 위한 기준으로 소비자 감성의 활용 가능성을 제안하였다는 실무적 의의를 가진다.
본 연구는 Node2vec 그래프 임베딩 방법과 Light GBM 링크 예측을 활용해 우리나라 식음료 산업의 미개척 수출 후보국가를 탐색한다. Node2vec은 네트워크의 공통 이웃 개수 등을 기반으로 하는 기존의 링크 예측 방법에 비해 상대적으로 취약하다고 알려져 있던 네트워크의 구조적 등위성 표현의 한계를 개선한 방법이다. 따라서 해당 방법은 네트워크의 커뮤니티 탐지와 구조적 등위성 모두에서 우수한 성능을 나타내는 것으로 알려져 있다. 이에 본 연구는 이상의 방법을 우리나라 식음료 산업의 국제 무역거래 정보에 적용했다. 이를 통해 해당 산업의 글로벌 가치사슬 관계에서 우리나라의 광범위한 마진 다각화 효과를 창출하는데 기여하고자 한다. 본 연구의 결과를 통해 도출된 최적의 예측 모델은 0.95의 정밀도와 0.79의 재현율을 기록하며 0.86의 F1 score를 기록해 우수한 성능을 나타냈다. 이상의 모델을 통해 도출한 우리나라의 잠재적 수출 후보국가들의 결과는 추가 조사를 통해 대부분 적절하게 나타난 것을 알 수 있었다. 이상의 내용을 종합하여 본 연구는 Node2vec과 Light GBM을 응용한 링크 예측 방법의 실무적 활용성에 대해 시사할 수 있었다. 그리고 모델을 학습하며 링크 예측을 보다 잘 수행할 수 있는 가중치 업데이트 전략에 대해서도 유용한 시사점을 도출할 수 있었다. 한편, 본 연구는 그래프 임베딩 기반의 링크 예측 관련 연구에서 아직까지 많이 수행된 적 없는 무역거래에 이를 적용했기에 정책적 활용성도 갖고 있다. 본 연구의 결과는 최근 미중 무역갈등이나 일본 수출 규제 등과 같은 글로벌 가치사슬의 변화에 대한 빠른 대응을 지원하며 정책적 의사결정을 위한 도구로써 충분한 유용성이 있다고 생각한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.