• Title/Summary/Keyword: 의사결정 나무기법

Search Result 254, Processing Time 0.032 seconds

An Study on Decision Tree Analysis with Imbalanced Data Set : A Case of Health Insurance Bill Audit in General Hospital (의사결정나무 분석에서 불균형 자료의 분석 연구 : 종합병원의 건강보험료 청구 심사 사례)

  • Heo Jun;Kim Jong-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1667-1676
    • /
    • 2006
  • 다른 산업과 달리 병원/의료 산업에서는 건강 보험료 심사 평가라는 독특한 검증 과정이 필수적으로 있게 된다. 건강 보험료 심사 평가는 병원의 수익 문제 뿐 아니라 적정한 진료행위를 하는 병원이라는 이미지와도 맞물려 매우 중요한 분야이며, 특히 대형 종합병원일수록 이 부분에 많은 심사관련 인력들을 투입하여, 병원의 수익과 명예를 위해서 업무를 수행하고 있다. 본 논문은 이러한 건강보험료 청구 심사 과정에서, 사전에 수많은 진료 청구 건 중 심사 평가에서 삭감이 될 수 있는 진료 청구 건을 데이터 마이닝을 통해서 발견하여, 사전의 대비를 철저히 하고자 하는 한 국내의 대형 종합병원의 사례를 소개하고자 한다. 데이터 마이닝을 적용함에 있어, 주요한 문제점 중의 하나는 바로 지도학습 기법을 적용하기에 곤란한 데이터 불균형 문제가 발생하는 것이다. 이런 불균형 문제를 해소하고, 비교 조건 중에 가장 효율적인 삭감 예상 진료 건 탐지 모형을 만들어 내기 위하여 데이터 불균형 문제의 기본 해법인 과, Sampling 오분류 비용의 다양하고 혼합적인 적용을 통하여, 적합한 조건을 가지는 의사결정 나무 모형을 도출하였다.

  • PDF

An Empirical Comparison of Bagging, Boosting and Support Vector Machine Classifiers in Data Mining (데이터 마이닝에서 배깅, 부스팅, SVM 분류 알고리즘 비교 분석)

  • Lee Yung-Seop;Oh Hyun-Joung;Kim Mee-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.343-354
    • /
    • 2005
  • The goal of this paper is to compare classification performances and to find a better classifier based on the characteristics of data. The compared methods are CART with two ensemble algorithms, bagging or boosting and SVM. In the empirical study of twenty-eight data sets, we found that SVM has smaller error rate than the other methods in most of data sets. When comparing bagging, boosting and SVM based on the characteristics of data, SVM algorithm is suitable to the data with small numbers of observation and no missing values. On the other hand, boosting algorithm is suitable to the data with number of observation and bagging algorithm is suitable to the data with missing values.

Development and its APPLIcation of Computer Program for Slope Hazards Prediction using Decision Tree Model (의사결정나무모형을 이용한 급경사지재해 예측프로그램 개발 및 적용)

  • Song, Young-Suk;Cho, Yong-Chan;Seo, Yong-Seok;Ahn, Sang-Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.59-69
    • /
    • 2009
  • Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in crystalline rocks like gneiss, granite, and so on, a prediction model was developed by the use of a decision tree model. The classification standard of the selected prediction model is composed of the slope angle, the coefficient of permeability and the void ratio in the order. The computer program, SHAPP ver. 1.0 for prediction of slope hazards around an important national facilities using GIS technique and the developed model. To prove the developed prediction model and the computer program, the field data surveyed from Jumunjin, Gangneung city were compared with the prediction result in the same site. As the result of comparison, the real occurrence location of slope hazards was similar to the predicted section. Through the continuous study, the accuracy about prediction result of slope hazards will be upgraded and the computer program will be commonly used in practical.

A Comparative Study on the Accuracy of Important Statistical Prediction Techniques for Marketing Data (마케팅 데이터를 대상으로 중요 통계 예측 기법의 정확성에 대한 비교 연구)

  • Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.775-780
    • /
    • 2019
  • Techniques for predicting the future can be categorized into statistics-based and deep-run-based techniques. Among them, statistic-based techniques are widely used because simple and highly accurate. However, working-level officials have difficulty using many analytical techniques correctly. In this study, we compared the accuracy of prediction by applying multinomial logistic regression, decision tree, random forest, support vector machine, and Bayesian inference to marketing related data. The same marketing data was used, and analysis was conducted by using R. The prediction results of various techniques reflecting the data characteristics of the marketing field will be a good reference for practitioners.

A Study on the Node Split in Decision Tree with Multivariate Target Variables (다변량 목표변수를 갖는 의사결정나무의 노드분리에 관한 연구)

  • Kim, Seong-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.386-390
    • /
    • 2003
  • Data mining is a process of discovering useful patterns for decision making from an amount of data. It has recently received much attention in a wide range of business and engineering fields. Classifying a group into subgroups is one of the most important subjects in data mining. Tree-based methods, known as decision trees, provide an efficient way to finding the classification model. The primary concern in tree learning is to minimize a node impurity, which is evaluated using a target variable in the data set. However, there are situations where multiple target variable should be taken into account, for example, such as manufacturing process monitoring, marketing science, and clinical and health analysis. The purpose of this article is to present some methods for measuring the node impurity, which are applicable to data sets with multivariate target variables. For illustration, a numerical cxample is given with discussion.

A Study on Regional Variations for Disease-specific Cardiac Arrest (질환성 심정지 발생의 지역별 변이에 관한 연구)

  • Park, Il-Su;Kim, Eun-Ju;Kim, Yoo-Mi;Hong, Sung-Ok;Kim, Young-Taek;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.353-366
    • /
    • 2015
  • The purpose of this study was to examine how region-specific characteristics affect the occurrence of cardiac arrest. To analyze, we combined a unique data set including key indicators of health condition and cardiac arrest occurrence at the 244 small administrative districts. Our data came from two main sources in Korea Center For Disease Control and Prevention (KCDC): 2010 Out-of-Hospital Cardiac Arrest Surveillance and Community Health Survey. We analyzed data by using multiple regression, geographically weighted regression and decision tree. Decision tree model is selected as the final model to explain regional variations of cardiac arrest. Factors of regional variations of cardiac arrest occurrence are population density, diagnosis rates of hypertension, stress level, participating screening level, high drinking rate, and smoking rate. Taken as a whole, accounting for geographical variations of health conditions, health behaviors and other socioeconomic factors are important when regionally customized health policy is implemented to decrease the cardiac arrest occurrence.

Multivariate process control procedure using a decision tree learning technique (의사결정나무를 이용한 다변량 공정관리 절차)

  • Jung, Kwang Young;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.639-652
    • /
    • 2015
  • In today's manufacturing environment, the process data can be easily measured and transferred to a computer for analysis in a real-time mode. As a result, it is possible to monitor several correlated quality variables simultaneously. Various multivariate statistical process control (MSPC) procedures have been presented to detect an out-of-control event. Although the classical MSPC procedures give the out-of-control signal, it is difficult to determine which variable has caused the signal. In order to solve this problem, data mining and machine learning techniques can be considered. In this paper, we applied the technique of decision tree learning to the MSPC, and we did simulation for MSPC procedures to monitor the bivariate normal process means. The results of simulation show that the overall performance of the MSPC procedure using decision tree learning technique is similar for several values of correlation coefficient, and the accurate classification rates for out-of-control are different depending on the values of correlation coefficient and the shift magnitude. The introduced procedure has the advantage that it provides the information about assignable causes, which can be required by practitioners.

A recommendation system for assisting devices in long-term care insurance (의사결정나무기법을 활용한 장기요양 복지용구 권고모형 개발)

  • Han, Eun-Jeong;Park, Sanghee;Lee, JungSuk;Kim, Dong-Geon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.693-706
    • /
    • 2018
  • It is very important to support the elderly with disability ageing in place. Assisting devices can help them to live independently in their community; however, they have to be used appropriately to meet care needs. This study develops an assisting device recommendation system for the beneficiaries of long-term care insurance that include algorithms to decide the most appropriate type of assisting device for beneficiaries. We used long-term care (LTC) insurance data for grade assessment including 8,084 beneficiaries from July 2015 to June 2016. In addition, we collected standard care plans for assisting devices, that power-assessors made, considering their performance and ability that could subsequently be matched with grade assessment data. We used a decision-tree model in data-mining to develop the model. Finally, we developed 15 algorithms for recommending assisting devices. The findings might be useful in evidence-based care planning for assisting devices and can contribute to enhancing independence and safety in LTC.

Length-of-Stay Prediction Model of Appendicitis using Artificial Neural Networks and Decision Tree (신경망과 의사결정 나무를 이용한 충수돌기염 환자의 재원일수 예측모형 개발)

  • Chung, Suk-Hoon;Han, Woo-Sok;Suh, Yong-Moo;Rhee, Hyun-SiIl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1424-1432
    • /
    • 2009
  • For the efficient management of hospital sickbeds, it is important to predict the length of stay (LoS) of appendicitis patients. This study analyzed the patient data to find factors that show high positive correlation with LoS, build LoS prediction models using neural network and decision tree models, and compare their performance. In order to increase the prediction accuracy, we applied the ensemble techniques such as bagging and boosting. Experimental results show that decision tree model which was built with less number of variables shows prediction accuracy almost equal to that of neural network model, and that bagging is better than boosting. In conclusion, since the decision tree model which provides better explanation than neural network model can well predict the LoS of appendicitis patients and can also be used to select the input variables, it is recommended that hospitals make use of the decision tree techniques more actively.

A Study on Construction of an Expert System for Enhancement of Industrial Safety (산업안전 향상을 위한 전문가 시스템 구축에 관한 연구)

  • Leem, Young-Moon;Choi, Yo-Han
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2005.11a
    • /
    • pp.324-327
    • /
    • 2005
  • 급속도로 발전하는 산업의 고도화와 이에 따른 업종의 다양화, 이에 동반되는 예상치 못한 산업재해는 불특정 다수에게 인적, 물적 피해를 야기 시키고 있다. 산업재해 예방을 위해 다양한 선행 연구들이 진행되었으나 이들 연구는 기존의 산업재해 데이터를 토대로 빈도분석, 비교분석을 통한 관리적, 교육적 등치 대책만을 제시하고 있다. 본 연구에서는 산업재해 예방을 위해 객관적이고 정량화된 데이터를 통한 예측 분석이 가능한 데이터마이닝을 적용하여 대표적인 기법인 의사결정나무의 CHAID, CART, C4.5, QUEST 4가지 알고리즘 비교분석하여 산업재해 예방 및 전문가 시스템 구축을 위해 적용할 수 있는 최적의 알고리즘을 제시하도록 한다.

  • PDF