• 제목/요약/키워드: 의사결정단위

검색결과 313건 처리시간 0.018초

1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발 (Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models)

  • 이준학;이하늘;강나래;황석환;김형수;김수전
    • 한국수자원학회논문집
    • /
    • 제56권5호
    • /
    • pp.311-323
    • /
    • 2023
  • 집중호우, 홍수 및 도시침수와 같은 재해를 저감시키기 위하여 자연 재난으로 인한 재해의 발생 여부를 사전에 파악하는 것은 중요하다. 현재 국내는 기상청에서 운영하고 있는 호우주의보 및 호우경보를 발령하고 있지만, 이는 전국에 일괄적인 기준으로 적용하고 있어 사전에 호우로 인한 피해를 명확하게 인지하지 못하고 있는 실정이다. 따라서, 일괄된 기준을 지역적 특성을 반영한 호우특보 기준으로 재설정하고 1시간 후에 강우로 발생할 수 있는 피해의 규모를 예측하고자 하였다. 연구 대상 지역으로는 호우피해가 가장 빈번하게 발생하였던 경기도 지역으로 선정하였고, 강우량 및 호우 피해액 자료를 활용하여 지역적 특성을 고려한 시간단위 재해 유발 강우를 설정하였다. 강우에 의한 호우피해 발생 여부를 예측하는 모형을 개발하기 위해 재해 유발 강우 및 강우 자료를 활용하였으며, 머신러닝 기법인 의사 결정 나무 모형과 랜덤 포레스트 모형을 활용하여 분석 및 비교하였다. 또한 1시간 후의 강우를 예측하기 위한 모형으로는 장단기 메모리, 심층 신경망 모형을 활용하여 분석 및 비교하였다. 최종적으로 예측 모형을 통해 예측된 강우를 훈련된 분류 모형에 적용하여 1시간 후 호우에 의한 규모별 피해 발생 여부를 예측하였고, 이를 1ST-모형이라고 정의하였다. 본 연구를 통해 개발된 1ST-모형을 활용하여 예방 및 대비 차원의 재난관리를 실시한다면 호우로 인한 피해를 저감하는데 기여 할 수 있을 것으로 판단된다.

침수유발 강우량을 이용한 강원특별자치도 호우특보 기준에 관한 연구 (The study of heavy rain warning in Gangwon State using threshold rainfall)

  • 이현지;강동호;이익상;김병식
    • 한국수자원학회논문집
    • /
    • 제56권11호
    • /
    • pp.751-764
    • /
    • 2023
  • 강원특별자치도는 태백산맥을 중심으로 지방에 따라 기후 특성이 매우 다르며, 국지성 호우가 빈번하게 발생하는 지역이다. 호우재해는 발생 시간이 짧고, 시공간적 변동성이 매우 커 많은 인명 및 재산피해를 유발한다. 최근 10년(2012~2021)간 강원지역 호우피해 발생 횟수는 28건이고, 평균 발생 피해액은 456억 원가량으로 집계되었다. 호우재해를 저감하기 위해선 지역단위의 재난관리 방안을 수립해야 한다. 특히나 현재 운영 중인 호우특보 기준은 획일화되어 지역 특성을 고려하지 못하는 한계가 있다. 이에 본 연구는 강원특별자치도에 위치한 특보구역을 대상으로 침수유발 강우량을 고려한 호우특보 기준을 제안하고자 한다. 특보구역별 침수유발 강우량 대푯값 분석 결과 평균값이 호우특보 발령 기준과 유사했고, 이를 본 연구의 호우특보 기준으로 선정하였다. 호우특보 기준 검토를 위한 강우사상으로 2019년 태풍 미탁, 2020년 태풍 마이삭과 하이선, 2023년 태풍 카눈 강우사상을 적용했고, Hit Rate 정확도 검증 결과 강릉평지 72%, 원주 98%로 본 연구는 실제 특보를 잘 반영함을 확인했다. 본 연구의 호우특보 기준은 위기경보 단계(관심, 주의, 경계, 심각)와 위계가 동일하여 선제적 호우재해 대응이 가능할 것으로 판단된다. 본 연구 결과는 향후 호우재해 대응의 획일적 의사결정 시스템을 보완하고, 이를 토대로 지역별 재해위험성을 고려한 호우특보 기준으로 활용될 수 있을 것으로 사료된다.

GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가 (Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics)

  • 조명희;심준석;이재안;장성현
    • 한국지리정보학회지
    • /
    • 제18권2호
    • /
    • pp.174-189
    • /
    • 2015
  • 본 연구는 낙동강 유역의 수생태계 건강성 조사지점에서 생물 및 서식환경, 수질에 대한 건강성을 조사 및 평가한 결과자료를 이용하여 공간정보로 재구축하고 공간분석기법을 활용하여 낙동강 유역의 수생태계 보전 및 복원 정책의 합리적인 의사결정을 지원하고 효율적인 관리방안을 제시하는데 목적이 있다. 낙동강 유역의 수생태계 건강성을 분석하기 위하여 250개 조사구간의 수생태계 건강성 조사 및 평가 결과자료를 각 지점별 위치정보를 기반으로 점형 자료로 구축하였다. 그리고 공간적인 분석기법의 적용을 위해 면형 자료로 재구축 할 필요성이 있으며, 이를 위해 Kriging 보간법(ArcGIS 10.1, Geostatistical Analysis)을 활용하여 공간적 영향력 및 트랜드를 분석하였고 면형 자료로 재구축 하였다. 이를 바탕으로 낙동강 유역 건강성의 공간분포 특성을 분석하기 위해 Hotspot(Getis-Ord Gi, $G^*_i$)과 LISA(Local Indicator of Spatial Association), 표준편차타원체(Standard deviational ellipse) 분석을 활용하였다. Hotspot 분석 결과 생물지수(TDI, BMI, FAI)의 Hotspot 유역은 안동댐 상류, 왕피천, 임하댐 유역으로 생물지수의 건강성 등급이 양호한 것으로 분석되었으며, Coldspot 유역은 낙동강 남해, 낙동강 하구, 수영강 등의 유역으로 나타났다. LISA 분석 결과 이례지역은 가화천, 합천댐 상류, 영강 상류 유역으로 분석되었으며 이 지역은 생물 건강성 지수가 높은 유역이지만 주변 유역의 건강성이 낮아 수생태계 건강성에 대한 관리가 필요한 유역으로 분석되었다. 이화학적 요인(BOD)의 Hotspot 유역은 낙동강하류 유역과 수영강, 회야강, 낙동강남해 유역으로 나타났으며, Coldspot 유역은 안동댐, 임하댐, 영강 등 낙동강 지류의 상류 유역으로 분석되었다. 서식 및 수변환경(HRI)요인의 Hotspot과 LISA 분석결과 요인별 Hotspot과 Coldspot이 다르게 분석되었으나 일반적으로 낙동강 상류, 안동댐, 임하댐, 합천댐 유역 등 낙동강 본류와 지류의 상류 유역 서식 및 수변환경 건강성이 좋은 것으로 분석되었다. 서식 및 수변환경 요인이 Coldspot으로 나타난 유역들은 생물지수와 이화학적 요인의 건강성 지수도 낮게 나타나 서식 및 수변환경의 관리가 필요한 유역으로 판단할 수 있다. 표준편차타원체로 분석한 시계열 분석결과 생물과 서식 및 수변환경에 의한 수생태계 건강성이 좋은 지역이 점점 북쪽으로 이동하는 경향을 나타내고 있으며 BOD 결과는 조사년도에 따라 방향과 집중도가 각각 다르게 나타나는 것으로 분석되었다. 이러한 수생태계 건강성 분석 결과는 조사지점별 건강성 관리정보뿐만 아니라 향후 공간정보 기술기반 수환경 연구와 실무연구진을 위한 집수구역 단위 수생태계를 관리할 수 있는 정보를 제공할 수 있을 것으로 판단된다.