• Title/Summary/Keyword: 의복의 보온력

Search Result 17, Processing Time 0.017 seconds

Relationship between Thermal Insulation and the Combinations of Korean Women's Clothing by Season - Using a Thermal Manikin - (한국 성인 여성의 계절별 의복조합과 보온력과의 관련성 - 써멀마네킨 실험에 의한 -)

  • Choi, Jeong-Wha;Ko, Eun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.966-973
    • /
    • 2007
  • The purpose of this study was to examine the correlation between the combination of women's clothing by season and thermal insulation using a thermal manikin. A total of 34 kinds of clothing ensembles were selected based on previous studies(8 types for spring/fall, 7 types for summer, and 19 types for winter). The results were as follows: The thermal insulation of clothing ensembles($I_{cle-total}$) ranged from $0.34{\sim}0.60clo$ for spring/fall, $0.16{\sim}0.37clo$ for summer, and $0.89{\sim}1.35clo$ for winter. The correlation coefficient between the thermal insulation of clothing ensembles and thermal insulation accumulated by the individual garments composing of the clothing ensembles($I_{cle-summed}$) was 0.982(p<0.001). The correlation coefficient between the thermal insulation of clothing ensembles and total clothing layers for the upper body part was 0.750 (p<0.001), for the total clothing weight was 0.978(p<0.001), and for the covering area was 0.776(p<0.001). In conclusion, $I_{cle-total}$ showed higher relationships to the $I_{cle-summed}$ and total clothing weight than to the total clothing layers or surface area covered by clothing.

The Effectso f Textiles Materials and Wearing Type on the Thermal Insulation Value (의복의 소재 및 형태가 보온력에 미치는 영향)

  • 손원교;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.8
    • /
    • pp.1098-1109
    • /
    • 1999
  • This study was to examine the effects of textiles materials and wearing types on the thermal regulation responses of human, Cotton polyester wool silk and rayon were chosen as outerwears and acetate was selected as a lining. Blouse-skirt suits blouse-slacks suits and one-piece dress made of selected textiles were examined by human trials, Tests results were as follows ; 1 When subjects wore vlouse-slacks suits Tmsk was showed the highest value. There was a significant difference on Tmsk(p<0.05) when they wore one-piece dress. The temperature of microclimate inside clothing when subjects wore blouse-slacks suits showed the highest value and one-piece dress and then blouse-skirt suits in order. For blouse-skirt suits clothing without lining showed higher temperature of the back of microclimate inside clothing than clothing with lining except cotton(p<0.1) 2. There were no significant consistency of the increasing rates of thermal insulation of garment at fabric test and human trials among polyesterand silk.

  • PDF

각 환경기온하에서의 성인남자 피부온에 관한 연구

  • 심부자
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.250-251
    • /
    • 1996
  • 인간의 온열환경에 대한 적응은 인간-의복-환경 System사이의 산열과 방열의 열교 환을 통해 보유량을 일정하게 유지하는 항체온 조절에 의해 이루어진다. 이러한 인체와 의 관계와의 열교환은 주로 피부표면을 통해 이루어지므로 피부온은 외계로의 방열을 예측 하여 인간의 체온조절반응을 나타내며, 온열감각을 좌우하는 인자로 의복의 온열생리, 의 복의 보온력, 쾌적성을 평가하는 중요한 생리적인 지표가 되어 착의의 적부를 검토하는 데 의미를 지니면서 의복설게의 기초가 된다. 이에 본 연구는 국내의 기후 및 변화된 온열환경에 적응된 인체의 각 환경기온하에서의 피부온을 기존의 연구와는 달리 장시간의 노출에 의한 변동을 파악하여 쾌적 착의의 관점에서 인체와 환경사이에 존재하는 의복에 있어서 설계의 기초가 되는 피부온의 의의를 재검토함을 목적으로 한다.

  • PDF

Seasonal changes in clothing microclimate (의복기후의 계절적 변동)

  • 김양원
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.164-168
    • /
    • 2001
  • 의복착용시의 쾌적성은 의복의 보온력 조절에 의해 의복내 기후를 형성하여, 체온을 일정하게 유지하게 하는 역할을 하므로 건강과 직접적인 관련이 있다. 그러므로 건강이나 쾌적성 평가의 측면에서 의복내기후가 체계적으로 파악되어야 한다. 따라서 본 연구에서는 사무실 환경에서 의복착용시 착용실험을 실시하여 계절적인 의복내기후의 변동을 살펴보았다. 그 결과 겨울 31.8$^{\circ}C$, 48.6%, 봄 33.5$^{\circ}C$, 47.9%, 여름 32.7$^{\circ}C$, 64.6%, 가을 31.9$^{\circ}C$, 43.6%인 것으로 나타났다. 또한 계절간의 차이는 의복내온도에 있어서 가을과 겨울간에는 차이가 없었으며, 봄과 여름간에는 차이가 있었다. 의복내습도는 여름과 겨울간에는 차이가 없었으며, 다른 계절간에는 차이가 뚜렷하였다.

  • PDF

Effects of garment types on thermal insulation using a thermal manikin (의복 형태가 보온력에 미치는 영향;써멀 마네킹 착용 실험에 의한)

  • 손원교;백윤정
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.8
    • /
    • pp.1110-1118
    • /
    • 1999
  • This study was to examine the effects of garment types on thermal insulation using a thermal manikin. cotton polyester wool silk and rayon were selected as outer wears like a blouse a skirt slacks and one-piece for this study Acetate was chosen as a lining. Brief and upper innerwear with long sleeves(cotton) were also chosen as the innerwear. The results were as follows: 1. The thermal insulation of the garment of single layer was in proportion to the covering area of garment in all types of clothing. 2. On adding the innerwear or the lining or both the thermal insulation of the each garment of single layer were showed a different trends by garment types. The thermal manikin insulations of one-piece dress adding the innerwear was higher than those of blouse-skirt suits. The thermal insulation of one-piece dress adding the innerwear and lining was lower than those of blouse-skirt suits. 3. The increasing rates of thermal insulation of multi-layered garments had different value by garment types but garment made of rayon and silk were showed very high increasing rates of thermal insulation. 4. The increasing rates of the thermal insulation of one-piece dress added the lining the innerwear or both except polyester showed the highest value and then blouse-slacks suits' turn came ound Blouse-skirt suits had the lowest the increasing rates of thermal insualition value.

  • PDF

Comparisons of Thermal Insulations between on Air-Cell Pack Embedded Jacket and Down Jackets (공기주입형 의복의 보온력 측정 및 다운재킷의 보온력과의 비교)

  • Kim, Yung-Bin;Jang, Won;Kim, Kirim;Kim, Siyeon;Baek, Yoon Jeong;Lee, Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • This study investigated the thermal insulation of an air-cell pack embedded jacket and down jackets to understand the potential of air-cell pack as a filler for winter outdoor wear. A thermal manikin measured the thermal insulation of the following jackets: HD (heavy down jacket, total weight (Tw) 750g, goose down weight (Dw) 350g), LD (light down jacket, Tw 560g, Dw 140g), AF (air-cell pack embedded jacket, Tw 490g, trunk goose down in LD was replaced to air cell), F (film jacket, Tw 469g, but removed the air in the air-cell pack from the AF), and Control (control jacket, Tw 438g, removed the air-cell pack film from the F). Thermal insulations of each experimental condition were measured in a static standing posture. Total thermal insulations (IT) were 1.29clo (HD), 1.23clo (LD), 1.16clo (AF), 1.20clo (F), and 1.08clo (Control). Body regional thermal insulation was higher in the chest and back than in the abdomen and hip in all conditions. The results suggest that an economical and versatile outdoor jacket with superior thermal insulation will be feasible if the air volume is properly controlled in air-cell pack embedded jackets in consideration of regional different distribution and used in combination with film and down.

Comparison and Evaluation of Clothing Insulation of Newly-Developed Air-Filled Baffle Jackets and Down Padded Jackets (새롭게 개발된 겨울용 공기주입형 배플 패딩 재킷과 기존 방한 패딩 재킷들의 보온력 비교 평가)

  • Kwon, JuYoun;Kim, Siyeon;Baek, Yoon Jeong;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.261-272
    • /
    • 2021
  • The purpose of the present study was to evaluate the thermal insulation of air-filled winter jackets according to the amount of air-filler using a thermal manikin. The insulation of these jackets' was compared to a down padded jacket with an identical design and size. The amounts of air-filler were 100% (26,219 cm3), 70% (18,645 cm3), 50% (13,110 cm3), and 0% (0 cm3). The results showed that a clothing insulation (Icl) of 0%, 50%, 70%, and 100% air, and 100% down jackets was 0.208, 0.243, 0.207, 0.176, and 0.315 clo, respectively. In addition, the down jacket with waisttaped had a clothing insulation of 0.369 clo. However, the highest value of clothing insulation per clothing weight was the 50% air-filled jacket in all conditions. In terms of regional power consumption of the thermal manikin, the down jacket consumed less power for the shoulder and chest than the air-filled jackets. In conclusion, in order to maximize the thermal insulation of air-filled jackets, an optimal amount of air-filler, that is, an amount which does not compromise (break) the layer of inner air between the surface of manikin and the lining of the jacket, should be explored. Further studies on lining materials, end-closed design, and changes in thermal insulation under the conditions of strong wind or heavy snow are recommended.

Influences of Wearing Different Thermal Insulated Clothings on Thermoregulatory Responses from $25^{\circ}C$ Environment to 18$^{\circ}C$ Environment ($25^{\circ}C$환경에서 $18^{\circ}C$환경으로 노출시 보온력이 상이한 의복의 착용이 체온조절 반응에 미치는 영향)

  • 이종민
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.826-832
    • /
    • 1998
  • In order to understand the influences of wearing clothings with different thermal insula-tions when men were exposed from $25^{\circ}C$ environment to 18$^{\circ}C$ environment, thermoregulatory responses were measured on 4 healthy female college students. Subjects rested wearing T-shirts, trousers, and socks called LC(total weight 541g) at 25$\pm$1$^{\circ}C$, 50$\pm$5% R.H. and then exposed to the room conditioned in 18$\pm$1$^{\circ}C$, 50$\pm$5$^{\circ}C$ R.H. with LC as it was(LC Type) or with T-shirts, trousers, socks, training wear upper garment, the training wear lower garment called HC (total weight 1368g)(HC Type) for 120 min. The results can be summarized as follows: 1) When subjects were exposed from $25^{\circ}C$ environment to 18$^{\circ}C$ environment, decrease of rectal temperature was significantly smaller in LC Type than in HC Type. 2)Increase of heat production and weight loss had no significant difference between two types of clothing. 3)Internal thermal conductance was higher in HC Type and external thermal conductance was higher in LC Type. Therefore total thermal conductance was higher in LC Type than in HC Type. 4)Decrease of skin temperature was greater in LC Type than in HC Type. 5)Subjects felt colder with LC Type than with HC Type, but did not feel differently in comfort sensation between two types of clothing. It was suggested that less decrease of rectal temperature in LC type inspite of more dry heat loss from body might be ascribed to a shift of blood from the shell area to the core area originating in the vasoconstriction and the lowered internal thermal conductance. In conclu-sion, the importance of the state of internal heat distribution in the homeostasis seemed to be reaffirmed.

  • PDF

The Relationship between Weight of Single Garments and Thermal Insulation with a Thermal Manikin (써멀마네킨을 이용한 단일의복의 중량과 보온력에 관한 연구)

  • Choi, Jeong-Wha;Lee, Hyo-Hyun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.2
    • /
    • pp.173-186
    • /
    • 2009
  • The purpose of this study was to examine the relationship between the weight of seasonal garments worn by Korean women in their daily lives and thermal insulation. We selected a total of 121 garments(13 kinds of Under garments, 51 Upper garments, 32 Lower garments, 15 Headgear, 10 Gloves Footgear) based on our previous survey using questionnaire and interview. Thermal insulation of single garment was measured with a thermal manikin. Also we measured garment weight, covering area, thickness, air permeability on the each garment(chamber air temperature: $21.5{\pm}0.5^{\circ}C$, humidity: $50{\pm}5%R.H.$ air speed: 0.15m/s). The results are as follow: The very strong positive correlation(r=0.905, p<.01) was recognized between the weight of single garment and thermal insulation. The regression equation of thermal insulation can be represented as follows: Thermal Insulation(clo)=$0.03+0.0004{\times}Garment$ Weight(g)($r^2$=0.820, SEE =0.059). There are significant differences in the thermal insulation and garment weight by season and garment type(p<.05). The each garment category's thermal insulation and garment weight has as follows: Under garment(0.06clo, 89g), Blouse Shirt T-shirt(0.13clo, 200g), Cardigan Sweater Vest(0.14clo, 287g), Coat Jacket Jumper(0.41clo, 890g), Skirt(0.16clo, 276g), Trousers(0.20clo, 438g), Headgear(0.03clo, 102g), Gloves Footgear(0.03clo, 33g).