• Title/Summary/Keyword: 의미 커널

Search Result 40, Processing Time 0.024 seconds

Relation Extraction based on Composite Kernel combining Pattern Similarity of Predicate-Argument Structure (술어-논항 구조의 패턴 유사도를 결합한 혼합 커널 기반관계 추출)

  • Jeong, Chang-Hoo;Choi, Sung-Pil;Choi, Yun-Soo;Song, Sa-Kwang;Chun, Hong-Woo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.73-85
    • /
    • 2011
  • Lots of valuable textual information is used to extract relations between named entities from literature. Composite kernel approach is proposed in this paper. The composite kernel approach calculates similarities based on the following information:(1) Phrase structure in convolution parse tree kernel that has shown encouraging results. (2) Predicate-argument structure patterns. In other words, the approach deals with syntactic structure as well as semantic structure using a reciprocal method. The proposed approach was evaluated using various types of test collections and it showed the better performance compared with those of previous approach using only information from syntactic structures. In addition, it showed the better performance than those of the state of the art approach.

Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents (다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축)

  • 장정호;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.595-604
    • /
    • 2004
  • Automatic analysis of concepts or semantic relations from text documents enables not only an efficient acquisition of relevant information, but also a comparison of documents in the concept level. We present a multiple cause model-based approach to text analysis, where latent topics are automatically extracted from document sets and similarity between documents is measured by semantic kernels constructed from the extracted topics. In our approach, a document is assumed to be generated by various combinations of underlying topics. A topic is defined by a set of words that are related to the same topic or cooccur frequently within a document. In a network representing a multiple-cause model, each topic is identified by a group of words having high connection weights from a latent node. In order to facilitate teaming and inferences in multiple-cause models, some approximation methods are required and we utilize an approximation by Helmholtz machines. In an experiment on TDT-2 data set, we extract sets of meaningful words where each set contains some theme-specific terms. Using semantic kernels constructed from latent topics extracted by multiple cause models, we also achieve significant improvements over the basic vector space model in terms of retrieval effectiveness.

Analyzing Dependencies of Korean Subordinate Clauses (복합 커널을 사용한 한국어 종속절의 의존관계 분석)

  • Kim, Sang-Soo;Park, Seong-Bae;Lee, Sang-Jo;Park, Se Young
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.91-98
    • /
    • 2007
  • 한국어에서 절들의 의존관계를 밝히는 작업은 구문 분석 작업에서 가장 어려운 작업들 중에 하나로 인식되고 있다. 절의 의존관계를 파악하는 일은 표면적으로 나타나는 정보만을 가지고 처리할 수 없고, 의미 정보 같은 추가적인 정보가 필요할 것으로 판단하고 처리해왔다. 본 논문에서는 추가적인 정보를 사용하지 않고, 문장에서 얻을 수 있는 표면적인 정보만을 사용하여 절들 간의 의존관계를 파악하는 방법을 제안한다. 문장에서 얻을 수 있는 표면적인 정보는 문장의 구문 정보(tree structure information)와 어휘 및 거리 정보를 가지고 있는 정적인 정보(static information)로 나누어 볼 수 있다. 본 논문에서는 절들 간의 의존 관계 파악을 위하여 구문 정보 및 어휘정보 등을 하나 이상의 커널의 결합해서 사용하는 복합 커널(composite kernel)을 제안하고, 이 커널에 맞는 다양한 인스턴스 공간의 설정을 제안한다. 실험 데이터는 구문 트리로 표현된 STEP 2000코퍼스를 사용하였다. 실험은 최적화된 인스턴스 공간을 절들 간의 의존관계 파악 및 문장 수준에서 성능을 검정하였다. 관계 인스턴스 공간은 절들 간의 연결을 기준으로 Path-enclosed Tree와 Flattened Path-enclosed Tree로, 하부절(관형절)의 표현 유무로 Complete Tree, Contex-sensitive Tree, Simple Tree로 나누어 각각의 조합으로 실험하여 결정하였다. 그리고 결정된 인스턴스 공간에서 복합커널을 사용한 방법이 좋은 성능을 발휘함을 보였다.

  • PDF

On variable bandwidth Kernel Regression Estimation (변수평활량을 이용한 커널회귀함수 추정)

  • Seog, Kyung-Ha;Chung, Sung-Suk;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.179-188
    • /
    • 1998
  • Local polynomial regression estimation is the most popular one among kernel type regression estimator. In local polynomial regression function esimation bandwidth selection is crucial problem like the kernel estimation. When the regression curve has complicated structure variable bandwidth selection will be appropriate. In this paper, we propose a variable bandwidth selection method fully data driven. We will choose the bandwdith by selecting minimising estiamted MSE which is estimated by the pilot bandwidth study via croos-validation method. Monte carlo simulation was conducted in order to show the superiority of proposed bandwidth selection method.

  • PDF

Research on Mac OS X Physical Memory Analysis (Mac OS X 물리 메모리 분석에 관한 연구)

  • Lee, Kyeong-Sik;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.89-100
    • /
    • 2011
  • Physical memory analysis has been an issue on a field of live forensic analysis in digital forensics until now. It is very useful to make the result of analysis more reliable, because record of user behavior and data can be founded on physical memory although process is hided. But most memory analysis focuses on windows based system. Because the diversity of target system to be analyzed rises up, it is very important to analyze physical memory based on other OS, not Windows. Mac OS X, has second market share in Operating System, is operated by loading kernel image to physical memory area. In this paper, We propose a methodology for physical memory analysis on Mac OS X using symbol information in kernel image, and acquire a process information, mounted device information, kernel information, kernel extensions(eg. KEXT) and system call entry for detecting system call hooking. In additional to the methodology, we prove that physical memory analysis is very useful though experimental study.

Robust Object Tracking based on Kernelized Correlation Filter with multiple scale scheme (다중 스케일 커널화 상관 필터를 이용한 견실한 객체 추적)

  • Yoon, Jun Han;Kim, Jin Heon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.810-815
    • /
    • 2018
  • The kernelized correlation filter algorithm yielded meaningful results in accuracy for object tracking. However, because of the use of a fixed size template, we could not cope with the scale change of the tracking object. In this paper, we propose a method to track objects by finding the best scale for each frame using correlation filtering response values in multi-scale using nearest neighbor interpolation and Gaussian normalization. The scale values of the next frame are updated using the optimal scale value of the previous frame and the optimal scale value of the next frame is found again. For the accuracy comparison, the validity of the proposed method is verified by using the VOT2014 data used in the existing kernelized correlation filter algorithm.

Analyzing dependency of Korean subordinate clauses using a composit kernel (복합 커널을 사용한 한국어 종속절의 의존관계 분석)

  • Kim, Sang-Soo;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Analyzing of dependency relation among clauses is one of the most critical parts in parsing Korean sentences because it generates severe ambiguities. To get successful results of analyzing dependency relation, this task has been the target of various machine learning methods including SVM. Especially, kernel methods are usually used to analyze dependency relation and it is reported that they show high performance. This paper proposes an expression and a composit kernel for dependency analysis of Korean clauses. The proposed expression adopts a composite kernel to obtain the similarity among clauses. The composite kernel consists of a parse tree kernel and a liner kernel. A parse tree kernel is used for treating structure information and a liner kernel is applied for using lexical information. the proposed expression is defined as three types. One is a expression of layers in clause, another is relation expression between clause and the other is an expression of inner clause. The experiment is processed by two steps that first is a relation expression between clauses and the second is a expression of inner clauses. The experimental results show that the proposed expression achieves 83.31% of accuracy.

  • PDF

Trend of Embedded Operating System Kernel Technology (임베디드 운영체제 커널 기술 동향)

  • Lee, H.S.;Jung, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.21 no.1 s.97
    • /
    • pp.1-13
    • /
    • 2006
  • 임베디드 시스템이라 함은 우리가 생활하는 주변에서 흔히 접할 수 있고, 얘기만 들어도 쉽게 이해할 수 있는 PDA, 스마트폰, MP3 플레이어, 셋톱박스 등의 정보가전 기기들을 비롯하여 로봇, 텔레매틱스, 공장자동화, 군사기기와 센서노드에 이르는 디지털기기들에 컴퓨터가 내장되어 들어가 있는 시스템을 의미한다. 이러한 임베디드 시스템에 사용되는 임베디드 운영체제는 VxWorks, VRTX, pSOS, QNX와 같은 전용 RTOS에만 의존해 왔으나, 최근의 발전된 하드웨어와 네트워크 인프라로 인하여 보다 낮은비용으로 쉽고 빠르게 개발하며 범용으로 사용될 수 있는 임베디드 리눅스를 활용하는사례가 늘어나고 있는 추세에 있다. 이렇게 각광 받기 시작하는 임베디드 리눅스의 커널 기술과 관련한 대표적 관련 기술에 대해 설명한다.

A Long Sentence Segmentation for the Efficient Analysis in English-Korean Machine Translation (영한 기계번역에서 효율적인 분석을 위한 긴 문장의 분할)

  • Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.89-96
    • /
    • 2005
  • 본 연구에서는 영한 기계 번역에서 20단어 이상의 긴 문장을 보다 정확히 분석하기 위하여 문장을 복수개의 의미 있는 절로 분할하고자 한다. 긴 문장은 구문 분석을 시도할 때, 시간적으로 또는 공간적으로 급격히 증가하는 자원을 소모시킨다. 이러한 문제를 해결하기 위하여, 본 연구에서는 긴 문장에서 분할 가능한 지점을 인식하여 이러한 지점을 중심으로 여러 개의 절을 생성한 후, 이 절을 개별적으로 분석하고자 하였다. 문장을 분할하기 위해서 일단 문장 내부에 존재하고 있는 분할이 가능한 지점을 선택하고, 선택된 지점을 중심으로 문맥 정보를 표현하는 입력 벡터를 생성하였다. 그리고 Support Vector Machine (SVM)을 이용하여 이러한 후보 지점의 특성을 학습하여 향후 긴 문장이 입력되었을 때 보다 정확하게 분할점을 찾고자 하였다. 본 논문에서는 SVM의 보다 좋은 학습과 분류를 위하여 내부 커널로써 다항 커널 (polynomial kernel)을 사용하였다. 그리고 실험을 통하여 약 0.97의 f-measure 값을 얻을 수 있었다.

  • PDF