• Title/Summary/Keyword: 의미 단어

Search Result 929, Processing Time 0.028 seconds

A Study on Lexical Knowledge Representation for Interlingua Machine Translation (중간언어 기계번역방식을 위한 어휘지식 표현체계에 관한 연구)

  • Li, Hui-Feng;Song, Seong-Dae;Lee, Jong-Hyeok;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.105-111
    • /
    • 1995
  • 본 논문에서는 중간언어 설계의 일부분으로, 중간의미 표현을 위한 어휘지식 표현 방안에 관하여 논한다. 기존 중간언어들은 단어의 의미 구별법이 단순한 선택적 제한을 기반으로 하고 있으며, 시소러스체계도 단일하게 유지하고 있다. 따라서, 단어의 의미간 중첩성이 반영되지 못하고 단어의 창조적 사용(creative use)에 대한 대처능력도 떨어진다. 또한 단일 시소러스체계를 통해서는 단어들의 명확한 분류기준을 파악할 수가 없다. 이러한 어휘지식 표현체계의 문제점들을 극복하기 위한 해결책으로서 생성사전(Generative Lexicon)을 도입하고, 중간표현의 관계기호를 효과적으로 파악하기 위한 관점에서의 시소러스 분류체계를 제안한다. 또한 이 같은 어휘지식 표현체계를 이용하여 문장의 구문구조로부터 중간표현을 나타내는 과정을 제시한다.

  • PDF

Korean Morphological Analysis Considering a Term with Multiple Parts of Speech ("의미적 한 단어" 유형 분석 및 형태소 분석 기법)

  • Hur, Yun-Young;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.128-131
    • /
    • 1994
  • 한국어 문서중 신문이나 시사지, 법률관련문서, 경제학관련문서, 국문학관련문서와 같은 전문분야 문서에는 한글, 한자, 영어, 문장부호와 같은 기호들의 결합으로 이루어지면서 하나의 뜻으로 나타내는 "의미적 한 단어"가 많이 존재한다. 이러한 단어들은 이를 고려하지 못한 형태소 분석기의 분석률을 감소시키고, 오분석율을 증가시킨다. 본 논문은 "의미적 한 단어"의 유형과 분석과정에 따른 유형을 분류하였으며 그에 적합한 형태소 분석기법을 제시하였다. 유형 분류과 제사된 형태소 분석기법으로 구현된 형태소 분석기는 기존의 형태소 분석기보다 분석률이 증가되었으며 오분석률은 감소되었다.

  • PDF

Word Sense Disambiguation using the Information Content and the Conceptual Density (정보량과 개념적 밀도를 이용한 단어 의미 중의성 해결)

  • Cho, Mi-Young;Kim, Pan-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.445-448
    • /
    • 2005
  • 기존의 정보 검색은 단순 키워드 매칭에 의한 패턴 매칭으로 의미적 정보 검색에는 한계가 있다. 이를 해결하기 위한 많은 연구가 이루어졌으나 질의 혹은 문서에 중의적 의미를 가진 단어를 포함하고 있는 경우에 검색시 문제가 되었다. 이에 본 논문에서는 WordNet기반의 단어 빈도수를 고려한 정보량과 단어 영역내 존재하는 노드 수를 고려한 개념적 밀도를 이용한 WSD(Word Sense Disambiguation)를 제안한다. SemCor를 이용하여 테스트한 결과 두 요소를 결합한 방법에 의해 WSD가 약 20% 향상되었다.

  • PDF

Word Sense Disambiguation Method Using Co-occurrence Information (공기정보를 이용한 단어 의미 중의성 해결 방안)

  • Park, Yo-Sep;Kim, Gyeong-Im;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.177-178
    • /
    • 2010
  • 단어 의미 중의성은 자연언어처리 분야에서의 주요 관심 분야이다. 한국어에서의 단어 의미 중의성 문제는 다른 언어에 비하여 연구가 미흡한 상태이다. 기존 연구에서는 빈도 수에 기반한 공기 정보 벡터를 이용한 방법에서 처리되지 못하는 경우가 발생하였다. 또한 사전에 기반한 상위어 추출 시에 정형화된 형태가 아닌 경우에 어려움이 발생하였다. 본 논문에서는 상호정보량을 추가하여 공기 정보 처리 과정 시에 발생하는 오류를 최소화 하였다. 또한 대상 명사의 상위어 추출 문제를 해결하기 위해 어휘 지식 베이스를 적용하였다.

  • PDF

A Study on the Prosody Generation of Korean Sentences using Neural Networks (신경망을 이용한 한국어 운율 발생에 관한 연구)

  • Lee Il-Goo;Min Kyoung-Joong;Kang Chan-Koo;Lim Un-Cheon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.65-69
    • /
    • 1999
  • 합성단위, 합성기, 합성방식 등에 따라 여러 가지 다양한 음성합성시스템이 있으나 순수한 법칙합성 시스템이 아니고 기본 합성단위를 연결하여 합성음을 발생시키는 연결합성 시스템은 연결단위사이의 매끄러운 합성계수의 변화를 구현하지 못해 자연감이 떨어지는 실정이다. 자연음에 존재하는 운율법칙을 정확히 구현하면 합성음의 자연감을 높일 수 있으나 존재하는 모든 운율법칙을 추출하기 위해서는 방대한 분량의 언어자료 구축이 필요하다. 일반 의미 문장으로부터 운율법칙을 추출하는 것이 바람직하겠으나, 모든 운율 현상이 포함된 언어자료는 그 문장 수가 극히 방대하여 처리하기 힘들기 때문에 가능하면 문장 수를 줄이면서 다양한 운율 현상을 포함하는 문장 군을 구축하는 것이 중요하다. 본 논문에서는 음성학적으로 균형 잡힌 고립단어 412 단어를 기반으로 의미문장들을 만들었다. 이들 단어를 각 그룹으로 구분하여 각 그룹에서 추출한 단어들을 조합시켜 의미 문장을 만들도록 하였다. 의미 문장을 만들기 위해 단어 목록에 없는 단어를 첨가하였다. 단어의 문장 내에서의 상대위치에 따른 운율 변화를 살펴보기위해 각 문장의 변형을 만들어 언어자료에 포함시켰다. 자연감을 높이기 위해 구축된 언어자료를 바탕으로 음성데이타베이스를 작성하여 운율분석을 통해 신경망을 훈련시키기 위한 목표패턴을 작성하였다 문장의 음소열을 입력으로 하고 특정음소의 운율정보를 발생시키는 신경망을 구성하여 언어자료를 기반으로 작성한 목표패턴을 이용해 신경망을 훈련시켰다. 신경망의 입력패턴은 문장의 음소열 중 11개 음소열로 구성된다. 이 중 가운데 음소의 운율정보가 출력으로 나타난다. 분절요인에 의한 영향을 고려해주기 위해 전후 5음소를 동시에 입력시키고 문장내에서의 구문론적인 영향을 고려해주기 위해 해당 음소의 문장내에서의 위치, 운율구에 관한 정보등을 신경망의 입력 패턴으로 구성하였다. 특정화자로 하여금 언어자료를 발성하게 한 음성시료의 운율정보를 추출하여 신경망을 훈련시킨 결과 자연음의 운율과 유사한 합성음의 운율을 발생시켰다.

  • PDF

CNN-based Distant Supervision Relation Extraction Model with Multi-sense Word Embedding (다중-어의 단어 임베딩을 적용한 CNN 기반 원격 지도 학습 관계 추출 모델)

  • Nam, Sangha;Han, Kijong;Kim, Eun-Kyung;Gwon, Seong-Gu;Jeong, Yu-Seong;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.137-142
    • /
    • 2017
  • 원격 지도 학습은 자동으로 매우 큰 코퍼스와 지식베이스 간의 주석 데이터를 생성하여 기계 학습에 필요한 학습 데이터를 사람의 손을 빌리지 않고 저렴한 비용으로 만들 수 있어, 많은 연구들이 관계 추출 문제를 해결하기 위해 원격 지도 학습 방법을 적용하고 있다. 그러나 기존 연구들에서는 모델 학습의 입력으로 사용되는 단어 임베딩에서 단어의 동형이의어 성질을 반영하지 못한다는 단점이 있다. 때문에 서로 다른 의미를 가진 동형이의어가 하나의 임베딩 값을 가지다 보니, 단어의 의미를 정확히 파악하지 못한채 관계 추출 모델을 학습한다고 볼 수 있다. 본 논문에서는 원격 지도 학습 기반 관계 추출 모델에 다중-어의 단어 임베딩을 적용한 모델을 제안한다. 다중-어의 단어 임베딩 학습을 위해 어의 중의성 해소 모듈을 활용하였으며, 관계 추출 모델은 문장 내 주요 특징을 효율적으로 파악하는 모델인 CNN과 PCNN을 활용하였다. 본 논문에서 제안하는 다중-어의 단어 임베딩 적용 관계추출 모델의 성능을 평가하기 위해 추가적으로 2가지 방식의 단어 임베딩을 학습하여 비교 평가를 수행하였고, 그 결과 어의 중의성 해소 모듈을 활용한 단어 임베딩을 활용하였을 때 관계추출 모델의 성능이 향상된 결과를 보였다.

  • PDF

CNN-based Distant Supervision Relation Extraction Model with Multi-sense Word Embedding (다중-어의 단어 임베딩을 적용한 CNN 기반 원격 지도 학습 관계 추출 모델)

  • Nam, Sangha;Han, Kijong;Kim, Eun-Kyung;Gwon, Seong-Gu;Jeong, Yu-Seong;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.137-142
    • /
    • 2017
  • 원격 지도 학습은 자동으로 매우 큰 코퍼스와 지식베이스 간의 주석 데이터를 생성하여 기계 학습에 필요한 학습 데이터를 사람의 손을 빌리지 않고 저렴한 비용으로 만들 수 있어, 많은 연구들이 관계 추출 문제를 해결하기 위해 원격 지도 학습 방법을 적용하고 있다. 그러나 기존 연구들에서는 모델 학습의 입력으로 사용되는 단어 임베딩에서 단어의 동형이의어 성질을 반영하지 못한다는 단점이 있다. 때문에 서로 다른 의미를 가진 동형이의어가 하나의 임베딩 값을 가지다 보니, 단어의 의미를 정확히 파악하지 못한 채 관계 추출 모델을 학습한다고 볼 수 있다. 본 논문에서는 원격 지도 학습 기반 관계 추출 모델에 다중-어의 단어 임베딩을 적용한 모델을 제안한다. 다중-어의 단어 임베딩 학습을 위해 어의 중의성 해소 모듈을 활용하였으며, 관계 추출 모델은 문장 내 주요 특징을 효율적으로 파악하는 모델인 CNN과 PCNN을 활용하였다. 본 논문에서 제안하는 다중-어의 단어 임베딩 적용 관계추출 모델의 성능을 평가하기 위해 추가적으로 2가지 방식의 단어 임베딩을 학습하여 비교 평가를 수행하였고, 그 결과 어의 중의성 해소 모듈을 활용한 단어 임베딩을 활용하였을 때 관계추출 모델의 성능이 향상된 결과를 보였다.

  • PDF

Semantic activation of Korean ambiguous words and context effect (한글 다의 단어의 의미적 활성화와 맥락효과)

  • Jung, Woon-Sim;Shin, Hyun-Jung
    • Annual Conference on Human and Language Technology
    • /
    • 1992.10a
    • /
    • pp.413-421
    • /
    • 1992
  • 두 개의 실험을 통하여, 시간경과에 따른 한글 다의 단어의 의미처리과정을 알아보고자 하였다. 실험1에서는 의미를 편향시키는 맥락이 없는 상황에서 다의어의 의미처리를 알아보고자 하였는데, 결과는 사용빈도가 높은 의미의 활성화 촉진의 정도가, 빈도가 낮은 의미에 비하여 크고 오래 지속됨을 보여주었다. 실험 2에서는 다의어의 의미를 하나의 의미로 편향시키는 맥락을 사용하였는데, 맥락에 부합하는 의미의 반응시간이 부합하지 않는 의미에 비하여 빨랐다. 그리고 처음에는(SOA가 짧을 때) 일차 의미와 이차 의미의 활성화가 동시에 이루어지지만, 시간이 경과할수록 일차 의미의 활성화촉진은 이차의미에 비하여 크고 오랫동안 유지됨을 보여주었다.

  • PDF

An Applicable Verb Prediction in Augmentative Communication System for Korean Language Disorders (언어장애인용 문장발생장치에 적용 가능한 동사예측)

  • 이은실;홍승홍;민홍기
    • Science of Emotion and Sensibility
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • 본 논문에서는 언어장애인용 문장발생장치의 통신율을 증진시키기 위한 처리방안으로 신경망을 이용하여 문장발생장치에 동사예측을 적용하는 방법을 제안하였다. 각 단어들은 구문론과 의미론에 따른 정보벡터로 표현되며, 언어처리는 전통적으로 사전을 포함하는 것과는 달리, 상태공간에서 다양한 영역으로 분류되어 개념적으로 유사한 단어는 상태공간에서의 위치를 통하여 알게 된다. 사용자가 심볼을 누르면 심볼에 해당하는 단어는 상태공간에서의 위치를 찾아가며, 신경망 학습을 통해 동사를 예측하였고 그 결과 제한된 공간 내에서 약 20% 통신율 증진을 가져올 수 있었다.

  • PDF

Word Sense Disambiguation for Coarse-grained Medical Corpus (의료 문서의 특성을 고려한 단어 모호성 해소 연구)

  • Song, Sa-Kwang;Jang, Jae-Won;Lim, Myung-Eun;Myaeng, Sung-Hyon;Park, Soo-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.943-948
    • /
    • 2007
  • 진료 기록 문서(CDA)가 의사들에 의해 작성되기 때문에 많은 전문용어, 약어, 숫자, 기호 등을 포함하고 있다. 본 논문에서는 이러한 특성을 고려하여 문서 내에서 여러 의미로 해석될 수 있는 약어, 중의어 등의 단어 모호성을 해소하고자 의미적 등가 부류를 이용하여 모호성을 해소하였다. 특히 의료문서가 많은 비율의 숫자, 기호를 사용하고 있고 문서 내에서 많은 의미적 유의성을 포함하고 있기 때문에 이들을 불용어로 처리하지 않고 의미적 등가 부류에 포함시킴으로써 진료문서 특성을 반영하였다.

  • PDF