유비쿼터스 센서 네트워크 환경에서 존재하는 다양한 센서 간 상호운용성 유지를 위한 연구가 활발히 진행되고 있다. 서로 이질적인 센서 네트워크에 존재하는 센서 간 상호운용성을 향상시키기 위해서는 다양한 문제들이 해결되어야 하며, 특히 센서 데이터에 대한 의미를 해석하고 활용할 수 있는 방법에 대한 연구가 필수적으로 요구된다. 즉 센서가 제공하는 센서 데이터뿐 아니라 센서의 종류와 측정단위, 관리기관 등의 정보를 이용하여 보다 다양한 양질의 서비스를 제공하기 위한 연구가 요구된다. 지금까지 센서 데이터의 의미 처리 문제를 해결하기 위한 연구가 진행되었으나 센서 데이터의 의미관리에 대한 높은 구축비용 문제와 동적인 의미 관리가 어렵다는 문제점을 지닌다. 따라서 이 논문에서는 앞서 언급한 문제점을 해결하고 보다 향상된 의미 처리 기능을 제공하는 센서 레지스트리 시스템을 제안한다. 제안한 방법은 ISO/IEC 11179 개념을 적용하여 의미 관리 및 처리 연산을 수행하며, 동적인 의미 관리와 낮은 의미 구축비용을 제공한다는 장점을 지닌다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.268-271
/
2022
단어 의미 모호성 해소는 동형이의어의 의미를 문맥에 맞게 결정하는 일이다. 최근 연구에서는 희소 데이터 처리를 위해 시소러스를 사용해 의미 어휘를 압축하고 사용하는 방법이 좋은 성능을 보였다[1]. 본 연구에서는 시소러스 없이 군집화 알고리즘으로 의미 어휘를 압축하는 방법의 성능 향상을 위해 두 가지 방법을 제안한다. 첫째, 의미적으로 유사한 의미 어휘 집합인 범주(category) 정보를 군집화를 위한 초기 군집 생성에 사용한다. 둘째, 다양하고 많은 문맥 정보를 학습해 만들어진 품질 좋은 벡터를 군집화에 사용한다. 영어데이터인 SemCor 데이터를 학습하고 Senseval, Semeval 5개 데이터로 평가한 결과, 제안한 방법의 평균 성능이 기존 연구보다 1.5%p 높은 F1 70.6%를 달성했다.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.280-287
/
1999
동사의 애매성이란 동일 동사 내부에서 공기하는 명사의 상충적 의미의 분포에 의해 발생한다. 이는 동일한 동사라 하더라도 명사의 상위개념, 흑은 개개의 명사에 따라 동사의 의미가 달라진다는 것을 의미한다. 동사의 애매성 해소를 위한 구문의미사전은 동사가 갖는 격틀과 논항에 오는 명사의 단어 집합에 의해 구성된다. 기계용 사전에서의 동사의 애매성이란 명사의 상위개념, 혹은 개개의 명사에 관한 정보가 결여될 때 나타난다. 지금까지의 구문의미사전은 개개의 동사가 갖는 격틀을 중심으로 논합명사의 예만을 제시하거나 명사의 상위개념을 기술하는 형식으로 구성되어 왔다. 이는 형식적인 패턴의 추출에는 유용하지만 대역어 선정을 위한 구문의미사전과 같은 섬세한 의미 정보를 필요로 하는 사전에서는 거의 효력을 발휘하지를 못한다. 다국어를 전제로 한 동사 대역어의 추출을 목적으로 하는 구문의미사전에서는 동사와 공기하는 논항명사의 철저한 추출과 검증에 의한 명사목록의 구축이 애매성 해소와 정확한 동사 대역어의 선정에 전제가 된다. 본 논문에서는 KAIST Corpus를 기반으로 현재 구축 중인 한국어 구문의미사전의 개요와 구축 과정에서 얻어진 방법론을 소개한다. 이 연구개발 결과는 과학기술부 KISTEP 특정연구개발과제 핵심소프트웨어개발 국어정보처리기술개발 중 "대용량 국어정보 심층 처리 및 품질 관리 기술 개발"의 지원을 받았다.
Kim, Minho;Hwang, Myeong-Jin;Shin, Jong-Hun;Kwon, Hyuk-Chul
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.96-102
/
2008
자연언어처리에서 어휘의 의미를 구분하는 것은 기계번역이나 정보검색과 같은 여러 응용 분야에서 매우 중요한 역할을 한다. 국내에서도 여러 어의 중의성 해소 시스템이 소개되었으나 대부분 시스템이 의미 부착 말뭉치를 이용한 감독 학습 방식을 기반으로 두고 있다. 본 논문은 한국어 어휘의미망을 이용한 비감독 어의 중의성 해소 시스템을 소개한다. 일반적으로 감독어의 중의성 해소 시스템은 비감독 어의 중의성 해소 시스템보다 성능은 좋으나 대규모의 의미 부착 말뭉치가 있어야 한다. 그러나 본 시스템은 한국어 어휘의미망과 의미 미부착 말뭉치에서 추출한 어휘 통계정보를 이용해, 의미 부착 말뭉치에서 추출한 의미별 통계 정보를 이용하는 감독 중의성 해소 방법과 같은 효과를 낸다. 본 시스템과 타 시스템의 성능 비교를 위해 'SENSEVAL-2' 평가 대회의 한국어 평가 데이터를 이용하였다. 실험 결과는 추출된 통계 정보를 바탕으로 우도비를 이용하였을 때 정확도 72.09%, 관계어 가중치를 추가로 이용하였을 때 정확도 77.02%로 감독 중의성 해소 시스템보다 높은 성능을 보였다.
Proceedings of the Korea Society for Industrial Systems Conference
/
2009.05a
/
pp.208-211
/
2009
본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.
Proceedings of the Korea Contents Association Conference
/
2004.11a
/
pp.265-268
/
2004
Keyword matching technique which is used in most information retrieval systems is unfit for efficient processing of geometrically increasing information. The problem can be solved by using semantic information and an efficient method of semantic processing is introduced in this paper. The technique uses conceptual graph to represent the semantic information and apply it for information retrieval. The implemented system can perform exact matching and partial matching. Partial matching has two different types. One is syntactic partial matching and the other is semantic partial matching. The semantic semilaries are measured by the subclass relations in the ontology. The introduced technique can be used not only information retrieval but also in various applications such as an implementation of dynamic hyperlinks.
The interpretation of noun sequence is to find semantic relation between the nouns in noun sequence. To interpret noun sequence, semantic knowledge about words and relation between words is required. In this thesis, we propose a method to interpret a semantic relation between nouns in noun sequence. We extract semantic information from an machine readable dictionary (MRD) and corpus using regular expressions. Based on the extracted information, semantic relation of noun sequence is interpreted. And. we use verb subcategorization information together with the semantic information from an MRD and corpus. Previous researches use semantic knowledge extracted only from an MRD but our method uses an MRD. corpus. and subcategorizaton information to interpret noun sequences. Experimental result shows that our method improves the accuracy rate by +40.30% and the coverage rate by + 12.73% better than previous researches.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.272-275
/
2019
단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.
Annual Conference on Human and Language Technology
/
1998.10c
/
pp.425-429
/
1998
본 논문은 문맥에서 추출한 가중치 정보를 이용한 한국어 동사의 의미 중의성 해소 모델을 제안한다. 중의성이 있는 단어가 쓰인 문장에서 그 단어의 의미 결정에 영향을 주는 단어들로 의미 결정자 벡터를 구성하고, 사전에서 그 단어의 의미 항목에 쓰인 단어들로 의미 항목 벡터를 구성한다. 목적 단어의 의미는 두 벡터간의 유사도 계산에 의해 결정된다. 벡터간의 유사도 계산은 사전에서 추출된 공기 관계와 목적 단어가 속한 문장에서 추출한 거리와 품사정보에 기반한 가중치 정보를 이용하여 이루어진다. 4개의 한국어 동사에 대해 내부실험과 외부실험을 하였다. 내부 실험은 84%의 정확률과 baseline을 기준으로 50%의 성능향상, 외부 실험은 75%의 정확률과 baseline을 기준으로 40 %의 성능향상을 보인다.
Annual Conference on Human and Language Technology
/
1992.10a
/
pp.413-421
/
1992
두 개의 실험을 통하여, 시간경과에 따른 한글 다의 단어의 의미처리과정을 알아보고자 하였다. 실험1에서는 의미를 편향시키는 맥락이 없는 상황에서 다의어의 의미처리를 알아보고자 하였는데, 결과는 사용빈도가 높은 의미의 활성화 촉진의 정도가, 빈도가 낮은 의미에 비하여 크고 오래 지속됨을 보여주었다. 실험 2에서는 다의어의 의미를 하나의 의미로 편향시키는 맥락을 사용하였는데, 맥락에 부합하는 의미의 반응시간이 부합하지 않는 의미에 비하여 빨랐다. 그리고 처음에는(SOA가 짧을 때) 일차 의미와 이차 의미의 활성화가 동시에 이루어지지만, 시간이 경과할수록 일차 의미의 활성화촉진은 이차의미에 비하여 크고 오랫동안 유지됨을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.