• Title/Summary/Keyword: 의미역

Search Result 964, Processing Time 0.022 seconds

Constructing a Korean Subcategorization Dictionary with Semantic Roles using Thesaurus and Predicate Patterns (시소러스와 술어 패턴을 이용한 의미역 부착 한국어 하위범주화 사전의 구축)

  • Yang, Seung-Hyun;Kim, Young-Sum;Woo, Yo-Sub;Yoon, Deok-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.3
    • /
    • pp.364-372
    • /
    • 2000
  • Subcategorization, defining dependency relation between predicates and their complements, is an important source of knowledge for resolving syntactic and semantic ambiguities arising in analyzing sentences. This paper describes a Korean subcategorization dictionary, particularly annotated with semantic roles of complements coupled with thesaural semantic hierarchy as well as syntactic dependencies. For annotating roles, we defined 25 semantic roles associated with surface case markers that can be used to derive semantic structures directly from syntactic ones. In addition, we used more than 120,000 entries of thesaurus to specify concept markers of noun complements, and also used 47 and 17 predicate patterns for verbs and adjectives, respectively, to express dependency relation between predicates and their complements. Using a full-fledged thesaurus for specifying concept markers makes it possible to build an effective selectional restriction mechanism coupled with the subcategorization dictionary, and using the standard predicate patterns for specifying dependency relations makes it possible to avoid inconsistency in the results and to reduce the costs for constructing the dictionary. On the bases of these, we built a Korean subcategorization dictionary for frequently used 13,000 predicates found in corpora with the aid of a tool specially designed to support this task. An experimental result shows that this dictionary can provide 72.7% of predicates in corpora with appropriate subcategorization information.

  • PDF

A Development of the Automatic Predicate-Argument Analyzer for Construction of Semantically Tagged Korean Corpus (한국어 의미 표지 부착 말뭉치 구축을 위한 자동 술어-논항 분석기 개발)

  • Cho, Jung-Hyun;Jung, Hyun-Ki;Kim, Yu-Seop
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.43-52
    • /
    • 2012
  • Semantic role labeling is the research area analyzing the semantic relationship between elements in a sentence and it is considered as one of the most important semantic analysis research areas in natural language processing, such as word sense disambiguation. However, due to the lack of the relative linguistic resources, Korean semantic role labeling research has not been sufficiently developed. We, in this paper, propose an automatic predicate-argument analyzer to begin constructing the Korean PropBank which has been widely utilized in the semantic role labeling. The analyzer has mainly two components: the semantic lexical dictionary and the automatic predicate-argument extractor. The dictionary has the case frame information of verbs and the extractor is a module to decide the semantic class of the argument for a specific predicate existing in the syntactically annotated corpus. The analyzer developed in this research will help the construction of Korean PropBank and will finally play a big role in Korean semantic role labeling.

Determination of Thematic Roles according to Syntactic Relations Using Rules and Statistical Models in Korean Language Processing (한국어 전산처리에서 규칙과 확률을 이용한 구문관계에 따른 의미역 결정)

  • 강신재;박정혜
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper presents an efficient determination method of thematic roles from syntactic relations using rules and statistical model in Korean language processing. This process is one of the main core of semantic analysis and an important issue to be solved in natural language processing. It is problematic to describe rules for determining thematic roles by only using general linguistic knowledge and experience, since the final result may be different according to the subjective views of researchers, and it is impossible to construct rules to cover all cases. However, our hybrid method is objective and efficient by considering large corpora, which contain practical usages of Korean language, and case frames in the Sejong Electronic Lexicon of Korean, which is being developed by dozens of Korean linguistic researchers. To determine thematic roles more correctly, our system uses syntactic relations, semantic classes, morpheme information, position of double subject. Especially by using semantic classes, we can increase the applicability of our system.

  • PDF

Assignment Semantic Category of a Word using Word Embedding and Synonyms (워드 임베딩과 유의어를 활용한 단어 의미 범주 할당)

  • Park, Da-Sol;Cha, Jeong-Won
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.946-953
    • /
    • 2017
  • Semantic Role Decision defines the semantic relationship between the predicate and the arguments in natural language processing (NLP) tasks. The semantic role information and semantic category information should be used to make Semantic Role Decisions. The Sejong Electronic Dictionary contains frame information that is used to determine the semantic roles. In this paper, we propose a method to extend the Sejong electronic dictionary using word embedding and synonyms. The same experiment is performed using existing word-embedding and retrofitting vectors. The system performance of the semantic category assignment is 32.19%, and the system performance of the extended semantic category assignment is 51.14% for words that do not appear in the Sejong electronic dictionary of the word using the word embedding. The system performance of the semantic category assignment is 33.33%, and the system performance of the extended semantic category assignment is 53.88% for words that do not appear in the Sejong electronic dictionary of the vector using retrofitting. We also prove it is helpful to extend the semantic category word of the Sejong electronic dictionary by assigning the semantic categories to new words that do not have assigned semantic categories.

The Processing of Thematic Role Information in Korean Verbs (한국어 동사의 의미역정보 처리과정)

  • Kim, Young-Jin;Woo, Jeung-Hee
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.2
    • /
    • pp.91-112
    • /
    • 2007
  • Two experiments were conducted to examine psychological reality and incremental nature of thematic processing in Korean sentence comprehension. By using two different types of verbs (i.e., transitive and causative verbs), we manipulated necessity of the thematic reanalysis (i.e., consistent vs. inconsistent condition) in the coordinated sentence structures. In Experiment 1, there was no significant difference in the reading times of the verbs between the consistent and the inconsistent condition. However, there was significant differences in question answering times between the two conditions. In Experiment 2 in which we changed a noun phrase of the test sentences into inanimate one, we found significant thematic reanalysis effects in the reading times of the final verbs. Based on these results we discussed the theoretical importance and universality of the thematic processes.

  • PDF

Korean Semantic Role Labeling with Highway BiLSTM-CRFs (Highway BiLSTM-CRFs 모델을 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.159-162
    • /
    • 2017
  • Long Short-Term Memory Recurrent Neural Network(LSTM RNN)는 순차 데이터 모델링에 적합한 딥러닝 모델이다. Bidirectional LSTM RNN(BiLSTM RNN)은 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN을 입력 데이터의 양 방향에 적용시킨 것으로 입력 열의 모든 정보를 볼 수 있는 장점이 있어 자연어처리를 비롯한 다양한 분야에서 많이 사용되고 있다. Highway Network는 비선형 변환을 거치지 않은 입력 정보를 히든레이어에서 직접 사용할 수 있게 LSTM 유닛에 게이트를 추가한 딥러닝 모델이다. 본 논문에서는 Highway Network를 한국어 의미역 결정에 적용하여 기존 연구 보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Korean Semantic Role Labeling with Highway BiLSTM-CRFs (Highway BiLSTM-CRFs 모델을 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Kim, Hyunki
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.159-162
    • /
    • 2017
  • Long Short-Term Memory Recurrent Neural Network(LSTM RNN)는 순차 데이터 모델링에 적합한 딥러닝 모델이다. Bidirectional LSTM RNN(BiLSTM RNN)은 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN을 입력 데이터의 양 방향에 적용시킨 것으로 입력 열의 모든 정보를 볼 수 있는 장점이 있어 자연어처리를 비롯한 다양한 분야에서 많이 사용되고 있다. Highway Network는 비선형 변환을 거치지 않은 입력 정보를 히든레이어에서 직접 사용할 수 있게 LSTM 유닛에 게이트를 추가한 딥러닝 모델이다. 본 논문에서는 Highway Network를 한국어 의미역 결정에 적용하여 기존 연구 보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Korean Semantic Role Labeling using Backward LSTM CRF (Backward LSTM CRF를 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Lim, Soojong
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.194-197
    • /
    • 2015
  • Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Korean Semantic Role Labeling Based on Suffix Structure Analysis and Machine Learning (접사 구조 분석과 기계 학습에 기반한 한국어 의미 역 결정)

  • Seok, Miran;Kim, Yu-Seop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.555-562
    • /
    • 2016
  • Semantic Role Labeling (SRL) is to determine the semantic relation of a predicate and its argu-ments in a sentence. But Korean semantic role labeling has faced on difficulty due to its different language structure compared to English, which makes it very hard to use appropriate approaches developed so far. That means that methods proposed so far could not show a satisfied perfor-mance, compared to English and Chinese. To complement these problems, we focus on suffix information analysis, such as josa (case suffix) and eomi (verbal ending) analysis. Korean lan-guage is one of the agglutinative languages, such as Japanese, which have well defined suffix structure in their words. The agglutinative languages could have free word order due to its de-veloped suffix structure. Also arguments with a single morpheme are then labeled with statistics. In addition, machine learning algorithms such as Support Vector Machine (SVM) and Condi-tional Random Fields (CRF) are used to model SRL problem on arguments that are not labeled at the suffix analysis phase. The proposed method is intended to reduce the range of argument instances to which machine learning approaches should be applied, resulting in uncertain and inaccurate role labeling. In experiments, we use 15,224 arguments and we are able to obtain approximately 83.24% f1-score, increased about 4.85% points compared to the state-of-the-art Korean SRL research.

Introduction to the Korean Word Map(UWordMap) and API (한국어 어휘지도(UWordMap)와 API 소개)

  • Bae, Young-Jun;Ock, CheolYoung
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.27-31
    • /
    • 2014
  • 한국어 문장의 의미 분석을 위해서는 어휘 의미들의 상의어, 하의어, 반의어, 유의어 등의 의미관계뿐만 아니라 서술어의 논항이 가지는 의미제약 정보 및 의미역, 서술어와 부사 명사와 부사, 부사와 부사와의 유의미한 결합 정보 등의 다양한 의미 정보가 필요하다. 한국어 어휘지도는 울산대 한국어처리연구실에서 2002년부터 현재까지 구축해 왔으며, 이제 구축된 결과물을 API와 함께 제공한다. 본 논문은 한국어 어휘지도의 대략적인 구조 및 API 등을 소개한다.

  • PDF