• Title/Summary/Keyword: 의미분석

Search Result 12,960, Processing Time 0.036 seconds

자연어를 이용한 사용자 접속에 관한 연구

  • Lee, Dong-Ae;Jang, Deok-Seong
    • Annual Conference on Human and Language Technology
    • /
    • 1990.11a
    • /
    • pp.149-155
    • /
    • 1990
  • MS-DOS 명령을 대신하는 자연어 인터페이스를 연구하였다. 자연어로 입력되는 한국어 문장을 형태소분석, 구문분석, 의미분석, 개념분석을 통해 대응되는 일련의 MS-DOS 명령을 생성한다. 형태소 분석에서는 Tabular Parsing법을 사용하였고, 구문분석에서는 문법적인 수식-피수식 관계를 확대하여 의미상의 수식-피수식 관계를 설정하고 이에 따라 문장을 몇개의 단위로 나눈다. 의미분석에서는 동사와 이들 단위들간의 관계와 단위를 구성하는 어절들간의 관계를 격관계로 설정하여, 개념망(semantic network)으로 문장의 의미를 표현한다. 이 개념망으로부터 MS-DOS 명령을 생성한다.

  • PDF

Exactly reading vs. at least reading of NPs with a numeral determiner

  • Wee, Hae-Kyung
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.06a
    • /
    • pp.162-172
    • /
    • 2002
  • 서수 한정사의 수식을 받는 명사구는 "정확히"의 의미와 "적어도"의 의미를 둘 다 가질 수 있다. Horn(1972)과 Kadmon(1985, 1987, 2001)은 "적어도"의 의미를 의미론적 의미로, "정확히"의 의미를 화용적 의미로 분석하고, Kamp는 그 반대 입장을 취한다. 그러나 서수 한정사의 의미를 그 의미 구조와 무관하게 일률적으로 분석하는 이런 접근 방식은 양쪽 중 어떤 입장을 취하든 다음의 두 사실을 설명할 수 없다 (i) 서술구에 쓰인 서수 한정사는 항상 "정확히"의 의미만을 갖는다. (ii) 초점을 받는 서수 한정사도 항상 "정확히"의 의미만을 갖는다. 이 연구는 초점 구문에 대한 논리-의미적 분석 방법에 근거하여 서수 한정사의 중의성의 의미를 설명한다. 구체적으로, 서수 한정사는 통사적 논항에 나타나든 통사적 서술구에 나타나든 상관없이 의미적으로 동일성의 서술구에 나타나면 항상 "정확히"의 의미만을 갖게 되고 의미적 주부에 나타나면 "적어도"의 의미를 갖게 된다는 사실을 보인다.

  • PDF

A Semantic Analysis of Korean Compound Nouns with Enforced Semantic Constraints using a Na${\ddot{i}}$ve Bayes Classifier (나이브 베이즈 분류기를 이용한 의미제약이 강화된 한국어 복합명사 의미 분석)

  • Lee, Yong-Hoon;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.102-106
    • /
    • 2011
  • 본 논문에서는 사전 원어정보를 이용한 기존 방법에 나이브 베이즈 분류기를 추가로 이용하는 의미제약 기술에 대하여 소개한다. 의미제약은 의미 분석의 전처리 단계로서 부분적으로 중의성을 해소하여 입력된 복합명사의 분석 정확도 뿐만 아니라 전체적인 분석시간의 단축에도 큰 도움을 준다. 나이브 베이즈 분류기를 이용하는 방법은 사전의 의존성으로 인해 제약할 수 없는 2-gram을 대상으로 제약을 시도한다. 분류기를 위한 학습데이터는 의미 태깅된 기분석 2-gram사전을 이용하여 U-WIN의 관계정보와 사전 그리고 패턴들에 의해 생성된다. 원어정보로 해결하지 못하는 34.63%의 2-gram중 2.83%에 대해 추가로 제약에 성공 하였다.

  • PDF

A study on integration of semantic topic based Knowledge model (의미적 토픽 기반 지식모델의 통합에 관한 연구)

  • Chun, Seung-Su;Lee, Sang-Jin;Bae, Sang-Tea
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.181-183
    • /
    • 2012
  • 최근 자연어 및 정형언어 처리, 인공지능 알고리즘 등을 활용한 효율적인 의미 기반 지식모델의 생성과 분석 방법이 제시되고 있다. 이러한 의미 기반 지식모델은 효율적 의사결정트리(Decision Making Tree)와 특정 상황에 대한 체계적인 문제해결(Problem Solving) 경로 분석에 활용된다. 특히 다양한 복잡계 및 사회 연계망 분석에 있어 정적 지표 생성과 회귀 분석, 행위적 모델을 통한 추이분석, 거시예측을 지원하는 모의실험(Simulation) 모형의 기반이 된다. 본 연구에서는 이러한 의미 기반 지식모델을 통합에 있어 텍스트 마이닝을 통해 도출된 토픽(Topic) 모델 간 통합 방법과 정형적 알고리즘을 제시한다. 이를 위해 먼저, 텍스트 마이닝을 통해 도출되는 키워드 맵을 동치적 지식맵으로 변환하고 이를 의미적 지식모델로 통합하는 방법을 설명한다. 또한 키워드 맵으로부터 유의미한 토픽 맵을 투영하는 방법과 의미적 동치 모델을 유도하는 알고리즘을 제안한다. 통합된 의미 기반 지식모델은 토픽 간의 구조적 규칙과 정도 중심성, 근접 중심성, 매개 중심성 등 관계적 의미분석이 가능하며 대규모 비정형 문서의 의미 분석과 활용에 실질적인 기반 연구가 될 수 있다.

Design and Implementation of an Analysis module based on MapReduce for Large-scalable Social Data (대용량 소셜 데이터의 의미 분석을 위한 MapReduce 기반의 분석 모듈 설계 및 구현)

  • Lee, Hyeok-Ju;Kim, Myoung-Jin;Lee, Han-Ku;Yoon, Hyo-Gun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.357-360
    • /
    • 2011
  • 최근 인터넷과 통신기술, 특히 모바일과 관련된 기술의 급속한 발전으로 소셜 커뮤니케이션 수단으로 대표되는 SNS(Social Networking Service)가 중요한 이슈로 부각되어지고 있다. SNS 서비스 제공시 중요하게 고려되어져야 할 사항은 정확하고 의미 있는 데이터를 통해서 사용자가 원하고 관심 있는 분야의 정보를 어떻게 제공할 것인가에 초점이 맞춰져 있어야 한다. 그러나 최근 폭발적으로 증가되어지고 있는 소셜 데이터 때문에 사용자는 의미 분석이 정확하게 이루어지지 않은 신뢰성이 결여된 소셜 커뮤니케이션 서비스를 제공받고 있다. 이러한 소셜데이터 분석의 문제점을 해결하기 위해서 본 논문에서는 소셜 네트워크 서비스에 필요한 데이터를 수집하고, 클라우드 컴퓨팅 환경에서 수집된 대용량 SNS 데이터의 의미를 분석 할 수 있는 MapReduce 기반의 분석 모듈의 구조를 제안하였다. 제안한 모듈은 의미 분석에 필요한 소셜 데이터를 수집하는 수집 기능과 수집된 소셜데이터의 의미 분석을 수행하는 분석 기능을 포함하고 있다. 수집 기능은 SNS에서 생성되는 텍스트 형태의 데이터를 수집하고 MapReduce를 통해서 데이터를 분석하기 쉽게 적절한 크기로 생성된 파일을 분할한다. 수집된 소셜 데이터의 의미 분석은 기존 TF-IDF 방식에 개선된 Weighted-MINMAX 적용한 알고리즘을 통해서 구현하였다. 개선된 알고리즘은 단어의 중요도를 평가하고, 중요도가 높은 단어로 구성된 의미정보 제공 서비스를 지원한다. 시스템의 성능 평가를 위해서 노드별 데이터 처리시간과 추출 키워드의 정확도를 측정하였다.

Deep Analysis of Question for Question Answering System (질의 응답 시스템을 위한 질의문 심층 분석)

  • Shin Seung-Eun;Seo Young-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, we describe a deep analysis of question for question answering system. It is difficult to offer the correct answer because general question answering systems do not analyze the semantic of user's natural language question. We analyze user's question semantically and extract semantic features using the semantic feature extraction grammar and characteristics of natural language question. They are represented as semantic features and grammatical morphemes that consider semantic and syntactic structure of user's questions. We evaluated our approach using 100 questions whose answer type is a person in the web. We showed that a deep analysis of questions which are comparatively short but enough to mean can analysis the user's intention and extract semantic features.

  • PDF

Analysis Disambiguation of Compound Nouns by Using the Semantic Information of Nouns in Korean (명사의 의미 정보를 이용한 복합명사 분석의 중의성 해소)

  • Kang, Yu-Hwan;Jang, Cheon-Young;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.171-175
    • /
    • 2002
  • 접사 처리는 복합명사 분석에서 중요한 문제인데 접사가 복합명사에 포함되어 있을 경우 여러 중의적 형태로의 분석이 가능하고 또한 미등록어 문제를 발생시킬 수 있기 때문이다. 단순한 접사 사전 정보만으로는 효율적인 분석을 수행할 수 없으므로 추가적인 정보가 필요하다. 본 논문에서는 접사로 인한 복합명사의 분석 중의성을 해소하기 위하여 명사의 의미 정보를 이용하는 방법에 대해 제안한다. 명사 의미 정보는 시소러스의 의미계층 정보로 최상위 계층 정보와 하위 4계층의 정보로 구성된다. 명사+접미사 형태의 의미 결합 정보를 구한 추, 접미사를 포함하는 복합명사의 단위 명사들 간의 의미 결합 정보를 구한다. 이렇게 구해진 명사들 간의 의미 결합 정보는 사전 정보에 추가되며 접사로 인한 중의적 분석 문제가 발생할 경우 명사들 간의 결합 정보를 이용하여 올바른 분석 후보를 선택한다.

  • PDF

A Comparison between Factor Structure and Semantic Representation of Personality Test Items Using Latent Semantic Analysis (잠재의미분석을 활용한 성격검사문항의 의미표상과 요인구조의 비교)

  • Park, Sungjoon;Park, Heeyoung;Kim, Cheongtag
    • Korean Journal of Cognitive Science
    • /
    • v.30 no.3
    • /
    • pp.133-156
    • /
    • 2019
  • To investigate how personality test items are understood by participants, their semantic representations were explored by Latent Semantic Analysis, In this thesis, Semantic Similarity Matrix was proposed, which contains cosine similarity of semantic representations between test items and personality traits. The matrix was compared to traditional factor loading matrix. In preliminary study, semantic space was constructed from the passages describing the five traits, collected from 154 undergraduate participants. In study 1, positive correlation was observed between the factor loading matrix of Korean shorten BFI and its semantic similarity matrix. In study 2, short personality test was constructed from semantic similarity matrix, and observed that its factor loading matrix was positively correlated with the semantic similarity matrix as well. In conclusion, the results implies that the factor structure of personality test can be inferred from semantic similarity between the items and factors.

Joint Model for Dependency Parser and Semantic Role Labeling using Recurrent Neural Network Parallelism (순환 신경망 병렬화를 사용한 의존 구문 분석 및 의미역 결정 통합 모델)

  • Park, Seong Sik;Kim, Hark Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.276-279
    • /
    • 2019
  • 의존 구문 분석은 문장을 구성하는 성분들 간의 의존 관계를 분석하고 문장의 구조적 정보를 얻기 위한 기술이다. 의미역 결정은 문장에서 서술어에 해당하는 어절을 찾고 해당 서술어의 논항들을 찾는 자연어 처리의 한 분야이다. 두 기술은 서로 밀접한 상관관계가 존재하며 기존 연구들은 이 상관관계를 이용하기 위해 의존 구문 분석의 결과를 의미역 결정의 자질로써 사용한다. 그러나 이런 방법은 의미역 결정 모델의 오류가 의존 구문 분석에 역전파 되지 않으므로 두 기술의 상관관계를 효과적으로 사용한다고 보기 어렵다. 본 논문은 포인터 네트워크 기반의 의존 구문 분석 모델과 병렬화 순환 신경망 기반의 의미역 결정 모델을 멀티 태스크 방식으로 학습시키는 통합 모델을 제안한다. 제안 모델은 의존 구문 분석 및 의미역 결정 말뭉치인 UProbBank를 실험에 사용하여 의존 구문 분석에서 UAS 0.9327, 의미역 결정에서 PIC F1 0.9952, AIC F1 0.7312의 성능 보였다.

  • PDF

Two-Phase Shallow Semantic Parsing based on Partial Syntactic Parsing (부분 구문 분석 결과에 기반한 두 단계 부분 의미 분석 시스템)

  • Park, Kyung-Mi;Mun, Young-Song
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.85-92
    • /
    • 2010
  • A shallow semantic parsing system analyzes the relationship that a syntactic constituent of the sentence has with a predicate. It identifies semantic arguments representing agent, patient, instrument, etc. of the predicate. In this study, we propose a two-phase shallow semantic parsing model which consists of the identification phase and the classification phase. We first find the boundary of semantic arguments from partial syntactic parsing results, and then assign appropriate semantic roles to the identified semantic arguments. By taking the sequential two-phase approach, we can alleviate the unbalanced class distribution problem, and select the features appropriate for each task. Experiments show the relative contribution of each phase on the test data.