• Title/Summary/Keyword: 의미기반 질의

Search Result 475, Processing Time 0.032 seconds

Semantic Query Expansion based on a Question Category Concept List in QA system (질의 응답 시스템에서 질의 카테고리별 개념리스트 구축에 기반한 의미적 질의 확장)

  • 김혜정;강보영;박성배;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.178-180
    • /
    • 2004
  • 질의 응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer tyype) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서의 정답문장에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 혹은 다른 문법적 정보를 가진 카테고리로 등장하여 정답 추출에 어려움이 따른다. 따라서, 본 논문은 질의별 카테고리 개념 리스트를 구축하여 효과적인 의미적 질의 확장 방법론을 제안한다. 제안된 방법은 먼저 질문 문장의 패턴 린 질의 정보 유형을 파악하여 질의 카테고리 및 카테고리별 개념 리스트를 구축한다. 그런 후 구축된 질의 개념 카테고리 및 리스트를 활용하여 질의 유형을 학습하고, 새로운 질의가 입력되면 해당 개념 카테고리로 분류한 후, 개념 리스트를 기반으로 개념별 질의 확장을 수행한다. 제안된 시스템의 성능 명가를 위하여, TREC-9의 질의와 TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건을 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.

  • PDF

Using Query Word Senses and User Feedback to Improve Precision of Search Engine (검색엔진의 정확률 향상을 위한 질의어 의미와 사용자 반응 정보의 이용)

  • Yoon, Sung-Hee
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.4
    • /
    • pp.81-92
    • /
    • 2009
  • This paper proposes a technique for improving performance using word senses and user feedback in web information retrieval, compared with the retrieval based on ambiguous user query and index. Disambiguation using query word senses can eliminating the irrelevant pages from the search result. According to semantic categories of nouns which are used as index for retrieval, we build the word sense knowledge-base and categorize the web pages. It can improve the precision of retrieval system with user feedback deciding the query sense and information seeking behavior to pages.

A Design of Image Information Retrieval System based on XML Database (XML 데이터베이스 기반의 영상정보 검색시스템 설계)

  • Kwak Kil-Sin;Joo Kyung-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.139-141
    • /
    • 2005
  • 최근 인터넷의 발달에 따라 XML 문서의 사용과 각종 영상정보의 양이 크게 증가되었다. 이에 따라 XML 문서를 관리하기 위한 XML 데이터베이스의 필요성과 메타데이터 표준화에 대한 중요성이 증가되고 있다. XML 데이터베이스는 XML 문서의 특성을 고려하여 그 특성을 효율적으로 지원할 수 있다. 또한 국내에서는 교육정보분야 메타데이터 표준인 KEM 2.0이 제정 되었고 국외에서는 멀티미디어 데이터에 대한 표준으로 MPEG-7이 제정이 되었다. 이에 따라 본 논문에서는 MPEG-7을 기반으로 KEM 2.0을 이용한 영상정보 XML 스키마를 생성하고 이를 이용한 영상정보 검색시스템을 XML 데이터베이스 기반으로 설계하고자 한다. 본 논문에서 설계하는 XML 데이터베이스 기반의 영상정보 검색시스템은 XML 문서에 대한 빠른 저장과 검색이 가능할 것이다. 또한 검색 기능에 있어서는 키워드 기반의 의미기반 검색과 유사 이미지를 통한 내용기반 검색, 그리고 이를 내용기반과 의미기반을 통합한 검색 기능을 제공할 것이며 XML 문서에 대한 강력한 질의 수단인 XQuery 질의를 포함하게 될 것이다.

  • PDF

A study on the Construction of Annotated corpora for the Automatic Classification of Open Domain Queries (오픈도메인 질의문 자동 분류를 위한 주석 말뭉치 구축 연구)

  • Ahn, AeLim;Lee, SeoJin;Choi, DongHyun;Kim, EungGyun;Nam, JeeSun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.309-314
    • /
    • 2019
  • 본 연구는 오픈도메인 자연어 질의문 유형을 '질문 초점(Question Focus)'에 따라 분류하고, 기계학습 기반 질의문 유형 분류기의 성능 향상을 위한 주석 말뭉치 구축을 목표로 한다. 오픈도메인 질의문 분석을 통해 의문사 등의 키워드 기반 질의문 유형 분류의 한계를 설명하고, 질의문 내의 비명시적인 의미자질을 고려한 질문 초점 기반 질의문 유형 분류 기준을 정의하였다. 이 기준에 따라 구축된 112,856 문장의 주석 말뭉치를 기계학습(CNN) 기반 문장 분류 시스템의 학습 데이터로 사용하여 실험한 결과 F1-Score 97.72%성능을 보였다. 또한 이를 카카오 오픈도메인 질의응답시스템에 적용하여 질의문 확장을 위한 의미 자질로 사용하였고 그 결과 전체 시스템 성능을 1.6%p 향상시켰다.

  • PDF

Ontology-based Semantic Information Extraction Using An Advanced Content-based Image Retrieval (향상된 콘텐츠 기반 이미지 검색을 이용한 온톨로지 기반 의미적 정보 추출)

  • Shin, Dong-Wook;Jeon, Ho-Chul;Jeong, Chan-Back;Kim, Tae-Hwan;Choi, Joong-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.348-353
    • /
    • 2008
  • 이미지의 사용이 증가함에 따라 이미지 중 사용자가 원하는 이미지를 효율적으로 검색하기 위한 방법들이 연구되어 왔다. 본 논문에서는 질의 이미지를 분석하여 이미지 특징(feature)을 추출한 후 이미지 특징에 대한 유사도 평가를 통한 이미지 검색 및 온톨로지를 기반으로 검색된 이미지들과 유사하다고 판단된 이미지와 그러한 이미지들의 의미적 정보를 추출하는 방법을 제안한다. 제안된 시스템은 질의 이미지에서 색상, 질감, 모양 등의 특징을 추출하여 유사도 평가를 통해 검색된 이미지를 제공하고, 내용기반 이미지 검색 방식을 통해 이미지를 검색하고, 온톨로지를 이용해 이미지의 의미적 정보를 추출하여 사용자에게 이미지와 관련된 의미적 정보를 제공한다.

  • PDF

Ontology Knowledge Base Scheme for User Query Semantic Interpretation (사용자 질의 의미 해석을 위한 온톨로지 지식베이스 스키마 구축)

  • Doh, Hana;Lee, Moo-Hun;Jeong, Hoon;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.285-292
    • /
    • 2013
  • The method of recent information retrieval passes into an semantic search to provide more accurate results than keyword-based search. But in common user case, they are still accustomed to using existing keyword-based search. Hence they are hard to create a typed structured query language. In this paper, we propose to ontology knowledge-base scheme for query interpretation of these user. The proposed scheme was designed based on the OWL-DL for description logic reasoning, it can provide a richer representation of the relationship between the object by using SWRL(Semantic Web Rule Language). Finally, we are describe the experimental results of the similarity measurement for verification of a user query semantic interpretation.

Ontology Knowledge based Information Retrieval for User Query Interpretation (사용자 질의 의미 해석을 위한 온톨로지 지식 기반 검색)

  • Kim, Nanju;Pyo, Hyejin;Jeong, Hoon;Choi, Euiin
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.245-252
    • /
    • 2014
  • Semantic search promises to provide more accurate result than present-day keyword matching-based search by using the knowledge base represented logically. But, the ordinary users don't know well the complex formal query language and schema of the knowledge base. So, the system should interpret the meaning of user's keywords. In this paper, we describe a user query interpretation system for the semantic retrieval of multimedia contents. Our system is ontological knowledge base-driven in the sense that the interpretation process is integrated into a unified structure around a knowledge base, which is built on domain ontologies.

Query-Based Summarization using Semantic Feature Matrix and Semantic Variable Matrix (의미 특징 행렬과 의미 가변행렬을 이용한 질의 기반의 문서 요약)

  • Park, Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.372-377
    • /
    • 2008
  • This paper proposes a new query-based document summarization method using the semantic feature matrix and the semantic variable matrix. The proposed method doesn't need the training phase using training data comprising queries and query specific documents. And it exactly summarizes documents for the given query by using semantic features and semantic variables that is better at identifying sub-topics of document. Because the NMF have a great power to naturally extract semantic features representing the inherent structure of a document. The experimental results show that the proposed method achieves better performance than other methods.

  • PDF

A New Keyword Search Algorithm for RDF/S and OWL Documents (RDF/S 및 OWL 문서에 대한 키워드 검색 알고리즘)

  • Kim, Hak Soo;Son, Jin Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.321-324
    • /
    • 2009
  • XML 또는 RDBMS 에서의 키워드 검색은 기존의 정보 검색처럼 데이터의 구조 또는 질의 언어에 대한 사전 지식 없이 질의 처리를 수행하는 연구 분야 중의 하나이다. 오늘날 키워드 검색을 효율적으로 처리하기 위해 제안된 연구들은 그래프 기반의 질의 처리에 기반한 기법들에 초점을 두고 있다. 이러한 접근들은 XML 또는 RDBMS 안에 존재하는 데이터를 그래프 구조에 기반한 데이터로 변환한 다음에 그래프 탐색을 통해서 모든 질의 키워드를 포함하는 결과들을 찾는다. 그러나 기존의 기법들을 RDF/S 또는 OWL 문서와 같은 복잡한 그래프 구조에 적용하기에는 질의 성능 측면에서 많은 문제점을 가지고 있다. 또한, 온톨로지 언어의 의미적 단위로서의 RDF 트리플을 고려하지 않기 때문에 질의 결과에 대한 신뢰성을 보장할 수 없다. 이러한 관점에서 본 논문은 RDF/S 또는 OWL 저장소에서 효율적이고 의미적인 키워드 검색을 위한 인덱싱 기법 및 알고리즘을 설계한다.

Method of Document Retrieval Using Word Embeddings and Disease-Centered Document Clusters (단어 의미 표현과 질병 중심 의학 문서 클러스터 기반 의학 문서 검색 기법)

  • Jo, Seung-Hyeon;Lee, Kyung-Soon
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.51-55
    • /
    • 2016
  • 본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질병중심 문서 클러스터와 단어 의미 표현을 이용하여 질의 확장 및 문서를 재순위화하는 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출하고 의학 인과 관계를 구축한다. 또한, 위키피디아에 나타나는 의학 용어들에 대하여 단어의 효율적인 의미 추정 기법을 이용하여 질병 어휘의 의미 표현 벡터를 구축하고 임상 인과 관계를 이용하여 질병 중심 문서 클러스터를 구축한다. 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 이후 질의와 관련된 병명과 단어 의미 표현을 이용하여 확장 질의를 선택한다. 또한, 질병 중심 문서 클러스터를 이용하여 문서 재순위화를 진행한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014, 2015 테스트 컬렉션에 대해 비교 평가한다.

  • PDF