• Title/Summary/Keyword: 의미기반 이미지 검색

Search Result 110, Processing Time 0.035 seconds

A Design and Implementation of Integrated Image Metadata for Semantic-based Image Search (의미기반 이미지 검색을 위한 통합 이미지 메타데이타의 설계 및 구현)

  • 권은영;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.145-147
    • /
    • 2004
  • 웹 상에서의 자료 검색 방법이 기존의 키워드 검색이나 단순 내용 기반 검색 방법에서 다양한 형태의 의미기반 검색으로 발전하고 있다. 멀티미디어 데이타를 효율적으로 저장, 검색하기 위해서는 표준화된 데이타 구조가 필요하다. 본 논문에서는 멀티미디어 자료 중에서 이미지의 의미기반 검색을 지원하기 위해 기존의 메타데이타 표준안을 반영한 확장성 있는 통합 이미지 메타데이타 구조를 정의하였다. 또한 통합 이미지 메타데이타를 웹 상에서 상호 교환하기 위해 XML 문서 형태로 표현하였으며, 이를 위해 VRA와 통합 이미지 메타데이타에 대한 XML 스키마를 정의하고 통합 이미지 메타데이타 XML 문서 생성기를 작성하였다

  • PDF

Design of Content-based Image Retrival System using Multilevel Metadata (다계층 메타데이타 기반 이미지 내용검색 시스템 설계)

  • 신용수;홍성용;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.142-144
    • /
    • 2002
  • 대부분의 내용기반 이미지 검색 시스템은 이미지의 특징 벡터인 색상, 모양, 그리고 질감에 의해서 유사한 이미지를 검색하는 기법을 제공하고 있다. 최근 이러한 내용기반 이미지 검색 기술은 의료 영상 이미지와 같은 다양한 분야에 적용되고 있으며, 이에 따라서 의료 이미지를 분석하여 저장, 검색하기 위한 데이터베이스 시스템이 증가하고 있다. 그러나, 대량의 이미지로부터 원하는 이미지를 검색하기 위해서는 이미지의 메타데이타를 효율적으로 표현해야 하며, 의미성과 이미지의 특징 데이터를 통합적으로 저장 관리 할 수 있는 이미지 데이터베이스를 설계하고 구축해야만 한다. 본 논문에서는 기존의 내용기반 이미지 검색 기법을 살펴보고. 이미지를 내용기반으로 분류하고 저장할 수 있는 데이터베이스 시스템을 설계하여 효율적인 의미기반 검색을 지원말 수 있는 모델을 제시한다. 다계층 메타데이타 레이어 구조로 이미지에 대한 개념 지식 모델을 표현하고, 이미지내의 객체를 메타데이타로 표현하여 분류할 수 있는 모델을 제안한다. 또한, 이미지 내용검색을 지원하기 위한 시스템 구조를 설계하고, 메타데이타가 저장되기 위한 관계형 모델을 스타 스키마의 형태로 제시한다. 제안된 방법은 의미적인 이미지 내용 검색 방법의 지원에 활용될 수 있다.

  • PDF

Intelligent Image Retrieval Techniques using Color Semantics (색상 의미를 이용한 지능적 이미지 검색 기법)

  • Hong, Sungyong;Nah, Yunmook
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.35-38
    • /
    • 2004
  • 기존의 내용기반 이미지 검색 시스템은 색상, 질감, 모양등과 같은 특징 벡터를 추출하여 검색하는 방법이 많이 연구되어 왔다. 특히 색상 정보는 이미지를 검색하기 위하여 중요한 정보로 사용되고 있다. 따라서 색상 이미지를 검색하기 위해서 평균 RGB, HSI값을 이용하거나 히스토그램을 이용하는 방식이 많이 사용 되어왔다. 본 논문에서는 사람이 시각적으로 보고 느끼는 색상(H), 채도(S), 명도(I) 방식을 이용한 HSI값을 사용하여 색상 의미를 이용한 지능적 이미지 검색 기법을 제안하고 알고리즘을 설명한다. 색상 의미(Color Semantics)란 사람의 시각적인 특징을 기반으로 칼라 이미지에 적용하여 감성 형용사 기반으로 검색할 수 있는 방법이다. 색상 의미를 이용한 지능적 이미지 검색은 색상-기반 질의(color-based retrieval)를 제공할 뿐만 아니라 인간의 감성이나 느낌에 의한 의미-기반 질의(semantic-based retrieval)방식을 가능하게 한다. 즉, "시원한 이미지" 혹은 "부드러운 이미지"를 검색하는 방식이다. 따라서 사용자의 검색 의도를 보다 정확하게 표현할 수 있으며, 검색의 결과에 대한 만족도를 향상 시킬 수 있다.

  • PDF

A Representation and Storage of Image Information using A Dual Graph Data Model (이중 그래프 데이터 모델을 이용한 이미지 정보 표현과 저장)

  • 박미화;엄기현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.124-129
    • /
    • 1998
  • 이미지 데이터베이스를 구성하여 사용자가 원하는 정보를 추출하는 의미 기반 검색을 지원하기 위해서는 이미지 내용에 관한 의미 정보들이 데이터 모델로 구조화되어야 한다. 본 논문에서는 다양한 정적 이미지 내용 정보들에 대한 내용 기반 검색과 의미 기반 검색을 제공하는 이미지 데이터 모델을 소개하고 이를 이용하여 이미지가 담고 있는 의미 정보를 표현하고 데이터베이스 스키마로 변환하여 저장하는 구조와 검색하는 방법을 소개한다. 본 이미지 데이터 모델은 이미지내에 포함된 시각 객체들의 내용 정보를 그래프 구조로 표현하고 객체들간의 의미 관계를 정의한다. 이는 이미지 내용에 대한 정확한 정보 표현과 질의와 검색을 가능하게 한다.

  • PDF

An Implementation of XML Database System for Semantic-Based E-Catalog Image Retrieval (의미기반 전자 카탈로그 이미지 검색을 위한 XML 데이타베이스 시스템 구현)

  • Hong Sungyong;Nah Yunmook
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1219-1232
    • /
    • 2004
  • Recently, the web sites, such as e-business sites and shopping mall sites, deal with lots of catalog image information and contents. As a result, it is required to support semantic-based image retrieval efficiently on such image data. This paper presents a semantic-based image retrieval system, which adopts XML and Fuzzy technology. To support semantic-based retrieval on product catalog images containing multiple objects, we use a multi-level metadata structure which represents the product information and semantics of image data. To enable semantic-based retrieval on such image data, we design a XML database for storing the proposed metadata and study how to apply fuzzy data. This paper proposes a system, generate the fuzzy data automatically to use the image metadata, that can support semantic-based image retrieval by utilizing the generating fuzzy data. Therefore, it will contribute in improving the retrieval correctness and the user's satisfaction on semantic-based e-catalog image retrieval.

  • PDF

Ontology-based Semantic Information Extraction Using An Advanced Content-based Image Retrieval (향상된 콘텐츠 기반 이미지 검색을 이용한 온톨로지 기반 의미적 정보 추출)

  • Shin, Dong-Wook;Jeon, Ho-Chul;Jeong, Chan-Back;Kim, Tae-Hwan;Choi, Joong-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.348-353
    • /
    • 2008
  • 이미지의 사용이 증가함에 따라 이미지 중 사용자가 원하는 이미지를 효율적으로 검색하기 위한 방법들이 연구되어 왔다. 본 논문에서는 질의 이미지를 분석하여 이미지 특징(feature)을 추출한 후 이미지 특징에 대한 유사도 평가를 통한 이미지 검색 및 온톨로지를 기반으로 검색된 이미지들과 유사하다고 판단된 이미지와 그러한 이미지들의 의미적 정보를 추출하는 방법을 제안한다. 제안된 시스템은 질의 이미지에서 색상, 질감, 모양 등의 특징을 추출하여 유사도 평가를 통해 검색된 이미지를 제공하고, 내용기반 이미지 검색 방식을 통해 이미지를 검색하고, 온톨로지를 이용해 이미지의 의미적 정보를 추출하여 사용자에게 이미지와 관련된 의미적 정보를 제공한다.

  • PDF

Image Content Modeling for Meaning-based Retrieval (의미 기반 검색을 위한 이미지 내용 모델링)

  • 나연묵
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.145-156
    • /
    • 2003
  • Most of the content-based image retrieval systems focuses on similarity-based retrieval of natural picture images by utilizing color. shape, and texture features. For the neuroscience image databases, we found that retrieving similar images based on global average features is meaningless to pathological researchers. To realize the practical content-based retrieval on images in neuroscience databases, it is essential to represent internal contents or semantics of images in detail. In this paper, we present how to represent image contents and their related concepts to support more useful retrieval on such images. We also describe the operational semantics to support these advanced retrievals by using object-oriented message path expressions. Our schemes are flexible and extensible, enabling users to incrementally add more semantics on image contents for more enhanced content searching.

A Systematic Review on Concept-based Image Retrieval Research (체계적 분석 기법을 이용한 의미기반 이미지검색 분야 고찰에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.4
    • /
    • pp.313-332
    • /
    • 2014
  • With the increased creation, distribution, and use of image in context of the development of digital technologies and internet, research endeavors have accumulated drastically. As two dominant aspects of image retrieval have been considered content-based and concept-based image retrieval, concept-based image retrieval has been focused in the field of Library and Information Science. This study aims to systematically review the accumulated research of image retrieval from the perspective of LIS field. In order to achieve the purpose of this study, two data sets were prepared: a total of 282 image retrieval research papers from Web of Science, and a total of 35 image retrieval research from DBpia in Kore for comparison. For data analysis, systematic review methodology was utilized with bibliographic analysis of individual research papers in the data sets. The findings of this study demonstrated that two sub-areas, image indexing and description and image needs and image behavior, were dominant. Among these sub-areas, the results indicated that there were emerging areas such as collective indexing, image retrieval in terms of multi-language and multi-culture environments, and affective indexing and use. For the user-centered image retrieval research, college and graduate students were found prominent user groups for research while specific user groups such as medical/health related users, artists, and museum users were found considerably. With the comparison with the distribution of sub-areas of image retrieval research in Korea, considerable similarities were found. The findings of this study expect to guide research directions and agenda for future.

A Multimedia Data Search System using Indexing Agent (인덱싱 에이전트를 이용한 멀티미디어 데이터 검색시스템)

  • Ko, Jae-Woon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.487-490
    • /
    • 2010
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템을 설계한다.

  • PDF

A Semantic-based Video Retrieval System using Indexing Agent (인덱싱 에이전트를 이용한 의미기반 비디오 검색 시스템)

  • 이종희;이근왕
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.281-284
    • /
    • 2003
  • 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템을 제안한다.

  • PDF