• 제목/요약/키워드: 의미구조

Search Result 4,075, Processing Time 0.027 seconds

Semi-automatic Event Structure Frame tagging of WordNet Synset (워드넷 신셋에 대한 사건구조 프레임 반자동 태깅)

  • Im, Seohyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.101-105
    • /
    • 2018
  • 이 논문은 가장 잘 알려진 어휘부중 하나인 워드넷의 활용 범위 확장을 위해 워드넷 신셋에 "사건구조 프레임(Event Structure Frame)"을 주석하는 연구에 관한 것이다. 워드넷을 비롯하여 현재 사용되고 있는 어휘부는 풍부한 어휘의미정보가 구조화되어 있지만, 사건구조에 관한 정보를 포함하고 있지는 않다. 이 연구의 가장 큰 기여는 워드넷에 사건구조 프레임을 추가함으로써 워드넷과의 연결만으로 핵심적인 어휘의미정보를 모두 추출할 수 있도록 해준다는 점이다. 예를 들어 텍스트 추론, 자연어처리, 멀티 모달 태스크 등은 어휘의미정보와 배경지식(상식)을 이용하여 태스크를 수행한다. 워드넷에 대한 사건구조 주석은 자동사건구조 주석 시스템인 GESL을 이용하여 워드넷 신셋에 있는 예문에 먼저 자동 주석을 하고, 오류에 대해 수동 수정을 하는 반자동 방식이다. 사전 정의된 23개의 사건구조 프레임에 따라 예문에 출현하는 타겟 동사를 분류하고, 해당 프레임과 매핑한다. 현재 이 연구는 시작 단계이며, 이 논문에서는 빈도 순위가 가장 높은 100개의 동사와 각 사건구조 프레임별 대표 동사를 포함하여 총 106개의 동사 레마에 대해 실험을 진행하였다. 그 동사들에 대한 전체 워드넷 신셋의 수는 1337개이다. 예문이 없어서 GESL이 적용될 수 없는 신셋을 제외하면 1112개 신셋이다. 이 신셋들에 대해 GESL을 적용한 결과 F-Measure는 73.5%이다. 향후 연구에서는 워드넷-사건구조 링크를 계속 업데이트하면서 딥러닝을 이용해 GESL 성능을 향상 할 수 있는 방법을 모색할 것이다.

  • PDF

A Study of the Narrative Structure and the Writer's Intent in the Hasaenggiwoojun(何生奇遇傳) (<하생기우전>의 서사구조와 작가적 의미 - 갈등양상을 중심으로 -)

  • Moon, Beom-doo
    • Journal of Korean Classical Literature and Education
    • /
    • no.37
    • /
    • pp.111-149
    • /
    • 2018
  • This story is written by Shin Kwang-han who is a famous scholar and writer in Josun Dynasty. The most notable feature of this story is the love between a man and a dead woman. The protagonist has failed the test to be a national official for several years, because of the corruption and unfairness of the leaders of his society. He is very upset, but then changes his mind in order to become an officer. One day he meets a dead woman. He saves her life from death, and falls in love with her. Finally he marries her and attains a high position. Till now, all the aspects of this story have been extensively researched from a number of different perspectives. However the narrative structure of this story has not been discussed much. This story belongs to Jungi-novel, a kind of old story style which includes fantasy. The studies on this story have mostly been carried out to find the different features in comparison with other works of the same style. Further, we could not understand its own specific meaning structure. This study aims to find the narrative structure of this story. It was recognized by researchers that Shin's stories talk about his life and his perspective of the world. Further, I will try to show how he expresses his thoughts, emotion and life through this story. First, to obtain a satisfactory result through this study, I will find a way to resolve several problems that have become the center of the controversy. Afterward, the conflict and resolution the hero's relation to the world will be identified in every paragraph. Through these efforts, we will have a new point of the view about the narrative structure of this story and the intent expressed by the writer through its structure.

Two-Level Clausal Segmentation Algorithm using Sense Information (의미 정보를 이용한 이단계 단문 분할 알고리즘)

  • Park, Hyun-Jae;Lee, Su-Seon;Woo, Yo-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.237-241
    • /
    • 1999
  • 단문 분할은 한 문장에 중심어인 용언이 복수개인 경우 용언을 중심으로 문장을 나누는 방법이다. 기존의 방법은 정형화된 문장의 경우 효율적인 결과를 얻을 수 있으나 구문적으로 복잡한 문장인 경우는 한계를 보였다. 본 논문에서는 이러한 한계를 극복하기 위해 구문 정보의 단문 분할이 아닌 의미 정보를 활용하여 복잡한 문장을 효율적으로 단문으로 분할하는 방법을 제안한다. 정형화된 문장의 경우와 달리 일상적인 문장은 문장의 구조적 애매성이나 조사의 생략 등이 빈번하므로 의미 수준에서의 단문 분할이 필요하다. 본 논문에서는 의미 영역에서 단문 분할의 할 경우 기존의 방법들의 애매성을 해소할 수 있다는 점을 보인다. 이를 위해, 먼저 하위범주화 사전과 시소러스의 의미 정보를 이용하여 용언과 보어 성분간의 의존구조를 1차적으로 작성하고 이후 구문적인 정보와 기타 문법적인 지식을 사용하여 기타 성분을 의존구조에 점진적으로 포함시켜가는 이단계 단문 분할 알고리즘을 제안한다. 제안된 이단계 단문 분할 방법의 유용성을 보이기 위해 ETRI-KONAN의 말뭉치 중 20,000문장을 반 자동적인 방법으로 술어와 보어 성분간의 의존구조를 태깅한 후 본 논문에서 제안한 방법과 비교하는 실험을 수행한다.

  • PDF

Learning of RNA Structural Grammar using Genetic Programming (유전자 프로그래밍을 이용한 RNA 구조 문법 학습)

  • 남진우;정제균;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.425-427
    • /
    • 2003
  • RNA는 세포내에서 유전자 발현에 직, 간접적으로 중요한 역할을 하며, RNA 구조는 세포 내에서의 기능과 깊은 연관이 있기 때문에 RNA 구조를 예측하는 것은 중요한 의미를 갖는다, 본 논문에서는 진화연산의 한가지인 유전자 프로그래밍(genetic programming) 방법을 사용하여 염기서열 정보를 참고하는 RNA 구조 문법의 학습 방법을 보여 준다. 이 RNA 구조를 의미하는 문법을 트리(tree)형태의 함수로 코드화(encoding) 한 후 이것을 유전자 프로그래밍 방법으로 진화시킨다. 진화를 통해 최적의 적합도를 갖는 트리의 문법을 테스트 데이터를 통해 평가한 결과 0.893의 특이도(speicificity)와 0.752의 민감도(sensitivity)를 보였다.

  • PDF

A Method of Word Sense Disambiguation for Korean Complex Noun Phrase Using Verb-Phrase Pattern and Predicative Noun (기계 번역 의미 대역 패턴을 이용한 한국어 복합 명사 의미 결정 방법)

  • Yang, Seong-Il;Kim, Young-Kil;Park, Sang-Kyu;Ra, Dong-Yul
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.246-251
    • /
    • 2003
  • 한국어의 언어적 특성에 의해 빈번하게 등장하는 명사와 기능어의 나열은 기능어나 연결 구문의 잦은 생략현상에 의해 복합 명사의 출현을 발생시킨다. 따라서, 한국어 분석에서 복합 명사의 처리 방법은 매우 중요한 문제로 인식되었으며 활발한 연구가 진행되어 왔다. 복합 명사의 의미 결정은 복합 명사구 내 단위 명사간의 의미적인 수식 관계를 고려하여 머리어의 선택과 의미를 함께 결정할 필요가 있다. 본 논문에서는 정보 검색의 색인어 추출 방법에서 사용되는 복합 명사구 내의 서술성 명사 처리를 이용하여 복합 명사의 의미 결정을 인접 명사의 의미 공기 정보가 아닌 구문관계에 따른 의미 공기 정보를 사용하여 분석하는 방법을 제시한다. 복합 명사구 내에서 구문적인 관계는 명사구 내에 서술성 명사가 등장하는 경우 보-술 관계에 의한 격 결정 문제로 전환할 수 있다. 이러한 구문 구조는 명사 의미를 결정할 수 있는 추가적인 정보로 활용할 수 있으며, 이때 구문 구조 파악을 위해 구축된 의미 제약 조건을 활용하도록 한다. 구조 분석에서 사용되는 격틀 정보는 동사와 공기하는 명사의 구문 관계를 분석하기 위해 의미 정보를 제약조건으로 하여 구축된다. 이러한 의미 격틀 정보는 단문 내 명사들의 격 결정과 격을 채우는 명사 의미를 결정할 수 있는 정보로 활용된다. 본 논문에서는 현재 개발중인 한영 기계 번역 시스템 Tellus-KE의 단문 단위 대역어 선정을 위해 구축된 의미 대역패턴인 동사구 패턴을 사용한다. 동사구 패턴에 기술된 한국어의 단문 단위 의미 격 정보를 사용하는 경우, 격결정을 위해 사용되는 의미 제약 조건이 복합 명사의 중심어 선택과 의미 결정에 재활용 될 수 있으며, 병렬말뭉치에 의해 반자동으로 구축되는 의미 대역 패턴을 사용하여 데이터 구축의 어려움을 개선하고자 한다. 및 산출 과정에 즉각적으로 활용될 수 있을 것이다. 또한, 이러한 정보들은 현재 구축중인 세종 전자사전에도 직접 반영되고 있다.teness)은 언화행위가 성공적이라는 것이다.[J. Searle] (7) 수로 쓰인 것(상수)(象數)과 시로 쓰인 것(의리)(義理)이 하나인 것은 그 나타난 것과 나타나지 않은 것들 사이에 어떠한 들도 없음을 말한다. [(성중영)(成中英)] (8) 공통의 규범의 공통성 속에 규범적인 측면이 벌써 있다. 공통성에서 개인적이 아닌 공적인 규범으로의 전이는 규범, 가치, 규칙, 과정, 제도로의 전이라고 본다. [C. Morrison] (9) 우리의 언어사용에 신비적인 요소를 부인할 수가 없다. 넓은 의미의 발화의미(utterance meaning) 속에 신비적인 요소나 애정표시도 수용된다. 의미분석은 지금 한글을 연구하고, 그 결과에 의존하여서 우리의 실제의 생활에 사용하는 $\ulcorner$한국어사전$\lrcorner$ 등을 만드는 과정에서, 어떤 의미에서 실험되었다고 말할 수가 있는 언어과학의 연구의 결과에 의존하여서 수행되는 철학적인 작업이다. 여기에서는 하나의 철학적인 연구의 시작으로 받아들여지는 이 의미분석의 문제를 반성하여 본다.반인과 다르다는 것이 밝혀졌다. 이 결과가 옳다면 한국의 심성 어휘집은 어절 문맥에 따라서 어간이나 어근 또는 활용형 그 자체로 이루어져 있을 것이다.으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract 농도(濃度)가 증가(增加)함에 따라 단백질(蛋白質) 함량(含量)도 증가(增加)하였다. 7. CHS-13 균주(菌株)의 RNA 함량(

  • PDF

Development of an Associative Value Knowledge Base based on UMLS & LOINC Database for Semantic Medical Information Integration. (의미적 의료정보 통합을 위한 UMLS와 LOINC DB 기반의 연관 값 지식베이스 개발)

  • Kim, Tae-Woo;Hong, Dong-Wan;Yoon, Jee-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05c
    • /
    • pp.1551-1554
    • /
    • 2003
  • 최근 다양한 의료정보 시스템이 개발되어, 그 사용이 급증하고 있다. 이 들 각각의 의료정보 시스템에서 발생, 축적된 의료정보는 분산 이질의 형태를 가지며, 또한 같은 의미를 갖는 의료정보가 각기 다른 구조와 용어로 기술되어 축적되는 것이 일반적이다. 이와 같이 개별적으로 개발, 활용되어 온 의료정보를 웹 상에서 통합하여, 단일화 된 의료정보 검색 기능을 제공하기 위해서는 이들 의료정보의 의미적 연관성을 고려한 정보의 통합, 검색 기술의 개발이 필수적이다. 본 논문에서는 의미적 의료정보의 통합을 위한 UMLS와 LOINC 데이터베이스 기반의 연관 값 지식베이스의 설계 및 개발 방식을 제안한다. 웹 상에 존재하는 각종 분산 이질 형태의 의료정보는 XML을 공통 데이터 구조로 하여 통합되며, 정보 통합의 과정에서 연관 값 지식베이스를 참조하여 의미적 관련도가 높은 의료정보(구조 정보와 내용 정보)는 상호 연결되어, 진정한 의미의 정보 통합을 구현하게 된다. 지식베이스는 용어별로 식별자, 요소명, 연관값, 복수형, 동의어, 한글 이름 등의 필드틀 가지며, 현재 상담, 처방, 보험, 의료용어, 증상, 임상결과 등 적용분야 별로 작성된 연관 값 지식베이스가 구현되어 있다.

  • PDF

Processing of the Associative Anaphor through Semantic Priming and Inference (의미점화와 추론을 통한 연상 조응사의 처리)

  • 윤홍옥;이성범;조숙환;전영진
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.65-71
    • /
    • 2002
  • 우리의 기억에 표상되어 있는 개념의 본질과 근원 그리고 이들의 관계에 대한 연구는 연상과 기억구조의 관계에 집중되어 왔다 따라서, 어떤 한 개념과 다른 한 개념이 관계되어 있다는 의미적 혹은 연상적 점화의 양상은 의미기억 구조를 적절히 예시할 수 있을 것이다. 본 연구는 어휘수준에서 보여지는 연상의 양상이 문장수준에서도 유사한 예측을 해낼 수 있는지를 살펴보고자 한다. 즉, 어휘수준에서 연상적 관계에 있는 두 개념이 선행사와 연상 조응사라는 문법성을 띠면서 문장에서 예상되는 역할을 수행할 때는, 의미기억의 또 다른 양상을 보여줄 것이라 예측되며, 이것은 문장의 의미·화용적 추론의 기제로 유인되고 있음을 제안하려고 한다. 또한, 의미·연상적 점화와 추론의 기제간의 적절한 상호작용은 문장의 응집성과 처리속도 간에도 유의미한 예측을 할 수 있음을 제안한다.

  • PDF

Text Classification using Cloze Question based on KorBERT (KorBERT 기반 빈칸채우기 문제를 이용한 텍스트 분류)

  • Heo, Jeong;Lee, Hyung-Jik;Lim, Joon-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.486-489
    • /
    • 2021
  • 본 논문에서는 KorBERT 한국어 언어모델에 기반하여 텍스트 분류문제를 빈칸채우기 문제로 변환하고 빈칸에 적합한 어휘를 예측하는 방식의 프롬프트기반 분류모델에 대해서 소개한다. [CLS] 토큰을 이용한 헤드기반 분류와 프롬프트기반 분류는 사전학습의 NSP모델과 MLM모델의 특성을 반영한 것으로, 텍스트의 의미/구조적 분석과 의미적 추론으로 구분되는 텍스트 분류 태스크에서의 성능을 비교 평가하였다. 의미/구조적 분석 실험을 위해 KLUE의 의미유사도와 토픽분류 데이터셋을 이용하였고, 의미적 추론 실험을 위해서 KLUE의 자연어추론 데이터셋을 이용하였다. 실험을 통해, MLM모델의 특성을 반영한 프롬프트기반 텍스트 분류에서는 의미유사도와 토픽분류 태스크에서 우수한 성능을 보였고, NSP모델의 특성을 반영한 헤드기반 텍스트 분류에서는 자연어추론 태스크에서 우수한 성능을 보였다.

  • PDF

The study of integration techniques for storing XML documents efficiently based on structures and semantics (구조 및 의미적 유사성에 기반한 XML 문서들의 효율적인 저장을 위한 통합 기법)

  • 김연희;김병곤;이재호;임해철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.590-592
    • /
    • 2003
  • 최근 XML이 웹 상의 데이터의 표현, 교환, 중재의 표준으로 각광받으면서 이러한 XML 문서를 효과적으로 저장, 접근 및 검색하기 위한 기법에 대한 연구가 많았으나, 기존의 연구들은 하나의 XML 문서를 저장 및 검색의 대상으로 하는 경우가 대부분이였다. 그러나 XML 문서를 데이터의 표현과 교환의 표준으로 이용하는 애플리케이션의 개발이 점차 활성화됨에 따라 저장해야하는 XML 문서의 수가 크게 증가하면서 의미나 구조적으로 많은 유사성을 지니는 XML 문서들을 함께 효율적으로 저장하고 검색하기 위한 기법의 연구가 요구된다. 따라서 본 논문에서는 의미 및 구조적으로 유사성을 가지는 여러 XML 문서들을 통합하는 기법을 제안한다. 제안된 통합 기법은 같은 DTD나 XML Schema를 가지는 경우와 다른 DTD나 XML Schema를 가지는 경우를 모두 고려한다. 또한 특별한 구조적 정보를 가지지 않는 XML 문서의 경우도 다른 DTD나 XML Schema를 가지는 경우와 마찬가지로 처리함으로써 다양한 XML 문서들에 대한 통합이 가능하도록 한다. 이러한 통합 기법은 중복되는 엘리먼트나 애트리뷰트에 대한 저장 공간의 낭비를 최소화한다. 또한 의미적으로 또는 구조적으로 관련성있는 여러 XML 문서의 부분들을 디스크 상의 페이지내에 서로 가까이 저장할 수 있기 때문에 사용자의 일반적인 질의에 대해 효율적이고 빠른 검색 결과를 유도할 수 있고, I/O 횟수를 줄임으로써 그에 따른 오버헤드를 줄일 수 있는 장점이 있다.

  • PDF

Korean Semantic Role Labeling Based on Suffix Structure Analysis and Machine Learning (접사 구조 분석과 기계 학습에 기반한 한국어 의미 역 결정)

  • Seok, Miran;Kim, Yu-Seop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.555-562
    • /
    • 2016
  • Semantic Role Labeling (SRL) is to determine the semantic relation of a predicate and its argu-ments in a sentence. But Korean semantic role labeling has faced on difficulty due to its different language structure compared to English, which makes it very hard to use appropriate approaches developed so far. That means that methods proposed so far could not show a satisfied perfor-mance, compared to English and Chinese. To complement these problems, we focus on suffix information analysis, such as josa (case suffix) and eomi (verbal ending) analysis. Korean lan-guage is one of the agglutinative languages, such as Japanese, which have well defined suffix structure in their words. The agglutinative languages could have free word order due to its de-veloped suffix structure. Also arguments with a single morpheme are then labeled with statistics. In addition, machine learning algorithms such as Support Vector Machine (SVM) and Condi-tional Random Fields (CRF) are used to model SRL problem on arguments that are not labeled at the suffix analysis phase. The proposed method is intended to reduce the range of argument instances to which machine learning approaches should be applied, resulting in uncertain and inaccurate role labeling. In experiments, we use 15,224 arguments and we are able to obtain approximately 83.24% f1-score, increased about 4.85% points compared to the state-of-the-art Korean SRL research.