• Title/Summary/Keyword: 의료영상 분할

Search Result 179, Processing Time 0.029 seconds

Scale Space Filtering based Parameters Estimation for Image Region Segmentation (영상 영역 분할을 위한 스케일 스페이스 필터링 기반 파라미터 추정)

  • Im, Jee-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.2
    • /
    • pp.21-28
    • /
    • 1996
  • The nature of complexity of medical images makes them difficult to segment using standard techniques. Therefore the usual approaches to segment images continue to predominantly involve manual interaction. But it tediously consumes a good deal of time and efforts of the experts. Hereby a nonmanual parameters estimation which can replace the manual interaction is needed to solve the problem of redundant manual works for an image segmentation. This paper attempts to estimate parameters for an image region segmentation using Scale Space Filtering. This attempt results in estimating the number of regions, their boundary and each representatives to be segmented 2-dimensionally and 3-dimensionally. Using this algorithm, we may diminish the problem of wasted time and efforts for finding prerequisite segmentation parameters, and lead the relatively reasonable result of region segmentation.

  • PDF

Phased Segmentation of Human Organs On the MDCT Scans (흉부 MDCT 영상을 이용한 신체 장기의 단계별 분할)

  • Shin, Min-Jun;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1383-1391
    • /
    • 2011
  • Following the appearance of the latest medical equipment with improved function, the importance of image analysis which enables effective image processing and analysis consistent with the hardware performance is on the rise. As well as, ongoing study is being done on the 2D medical image processing and 3D reconstruction. This paper segments chest CT images into each stage and finally shows 3D reconstruction of each segmented result. Among various image segmentation methods, Region Growing and apply sharpening and Gamma Controller as for image improvement for effective segmentation, image segmentation in order of bronchus and lung, bronchus, lung. Human organs image of segmented is use VTK(Visualization Toolkit) to make 3D reconstruction, two and three-dimensional medical image processing and analysis for lesions diagnosis are able to utilized.

Performance Comparison Between New Level Set Method and Previous Methods for Volume Images Segmentation (볼륨영상 분할을 위한 새로운 레벨 셋 방법과 기존 방법의 성능비교)

  • Lee, Myung-Eun;Cho, Wan-Hyun;Kim, Sun-Worl;Chen, Yan-Juan;Kim, Soo-Hyung
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.131-138
    • /
    • 2011
  • In this paper, we compare our proposed method with previous methods for the volumetric image segmentation using level set. In order to obtain an exact segmentation, the region and boundary information of image object are used in our proposed speed function. The boundary information is defined by the gradient vector flow obtained from the gradient images and the region information is defined by Gaussian distribution information of pixel intensity in a region-of-interest for image segmentation. Also the regular term is used to remove the noise around surface. We show various experimental results of real medical volume images to verify the superiority of proposed method.

Fuzzy-based Segmentation Algorithm for Brain Images (퍼지기반의 두뇌영상 영역분할 알고리듬)

  • Lee, Hyo-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.102-107
    • /
    • 2009
  • As technology gets developed, medical equipments are also modernized and leading-edge systems, such as PACS become popular. Many scientists noticed importance of medical image processing technology. Technique of region segmentation is the first step of digital medical image processing. Segmentation technique helps doctors to find out abnormal symptoms early, such as tumors, edema, and necrotic tissue, and helps to diagnoses correctly. Segmentation of white matter, gray matter and CSF of a brain image is very crucial part. However, the segmentation is not easy due to ambiguous boundaries and inhomogeneous physical characteristics. The rate of incorrect segmentation is high because of these difficulties. Fuzzy-based segmentation algorithms are robust to even ambiguous boundaries. In this paper a modified Fuzzy-based segmentation algorithm is proposed to handle the noise of MR scanners. A proposed algorithm requires minimal computations of mean and variance of neighbor pixels to adjust a new neighbor list. With the addition of minimal compuation, the modified FCM(mFCM) lowers the rate of incorrect clustering below 30% approximately compared the traditional FCM.

Feature Extraction and Image Segmentation of Mechanical Structures from Human Medical Images (의료 영상을 이용한 인체 역학적 구조물 특징 추출 및 영상 분할)

  • 호동수;김성현;김도일;서태석;최보영;김의녕;이진희;이형구
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • We tried to build human models based on medical images of live Korean, instead of using standard data of human body structures. Characteristics of mechanical structures of human bodies were obtained from medical images such as CT and MR images. For each constitutional part of mechanical structures CT images were analyzed in terms of gray levels and MR images were analyzed in terms of pulse sequence. Characteristic features of various mechanical structures were extracted from the analyses. Based on the characteristics of each structuring element we peformed image segmentation on CT and MR images. We delineated bones, muscles, ligaments and tendons from CT and MR images using image segmentation or manual drawing. For the image segmentation we compared the edge detection method, region growing method and intensity threshold method and applied an optimal compound of these methods for the best segmentation results. Segmented mechanical structures of the head/neck part were three dimensionally reconstructed.

  • PDF

Design of robust Medical Image Security Algorithm using Watershed Division Method (워터쉐드 분할 기법을 이용한 견고한 의료 영상 보안 알고리즘 설계)

  • Oh, Guan-Tack;Jung, Min-Six;Lee, Yun-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.511-515
    • /
    • 2008
  • 디지털 워터마크 기법은 음악, 영상, 동영상에 대한 저작권과 재산권의 보호 및 인증, 데이터 손실 여부 판단, 복사 방지 및 추적 등을 목적으로 한 사후 재산권의 보호 기술로 제안되었다. 본 연구에서는 워터마크의 기하학적인 왜곡에 대한 공격에 견고하게 하도록 영상의 전 처리 과정을 거친다. 그리고 선택된 기하학적인 불변점을 골라 여러 가지 영상처리에 강인하며 일정 기간 압축 저장되는 영상에서도 워터마킹이 유지되도록 워터쉐드(watershed) 분할 기법을 이용한 의료 영상 보안 알고리즘을 제안한다. 본 논문에서 제안한 워터마킹 알고리즘은 의료 영상에 대한 RST 공격, JPEG 압축 공격 그리고 필터링 공격보다 강인함을 확인하였다.

  • PDF

Region-Growing Segmentation Algorithm for Rossless Image Compression to High-Resolution Medical Image (영역 성장 분할 기법을 이용한 무손실 영상 압축)

  • 박정선;김길중;전계록
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • In this paper, we proposed a lossless compression algorithm of medical images which is essential technique in picture archive and communication system. Mammographic image and magnetic resonance image in among medical images used in this study, proposed a region growing segmentation algorithm for compression of these images. A proposed algorithm was partition by three sub region which error image, discontinuity index map, high order bit data from original image. And generated discontinuity index image data and error image which apply to a region growing algorithm are compressed using JBIG(Joint Bi-level Image experts Group) algorithm that is international hi-level image compression standard and proper image compression technique of gray code digital Images. The proposed lossless compression method resulted in, on the average, lossless compression to about 73.14% with a database of high-resolution digital mammography images. In comparison with direct coding by JBIG, JPEG, and Lempel-Ziv coding methods, the proposed method performed better by 3.7%, 7.9% and 23.6% on the database used.

  • PDF

Design and Implementation of Brain MR Image Processing Tool (뇌 MR 영상처리기의 설계 및 구현)

  • 조경은;송미영;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.159-164
    • /
    • 2001
  • 본 연구에서 설계하고 구현한 뇌 MR영상 처리기에서는 뇌 MR 영상에서 진단에 필요한 정보들을 자동 추출한다. 의료영상 처리 시에는 수집된 의료영상의 특징을 분석하고 특징들을 분류해야 하며 이를 위해서는 효율적인 특징 추출 알고리즘들 필요하다. 뇌 MR 영상 처리기는 영상의 잡음제거나 영상 강화를 위한 전처리기, 영상의 특징을 추출하기 위한 영역분할기와 전역, 지역 특징 추출기로 구성된다. 뇌 MR 영상 특징 추출을 위한 효율적인 의료영상 처리기의 개발 내용을 기술한다.

  • PDF

Adjecent Object Segmentation Method Using Geometric Information in Cell Images (세포영상에서의 기하정보를 이용한 인접객체 분할 방법)

  • Eun, Sung-Jong;WhangBo, Taeg-Keun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.296-299
    • /
    • 2011
  • 임상 진단에서 환자의 의료 영상을 시각적으로 보고 해석하거나 또는 수작업으로 영상을 해석하여 진단에 이용한다. 이러한 수작업의 불편함을 해소하기 위하여 의료 영상처리 알고리즘들이 많이 연구되어오고 있다. 그 중 영상처리의 정확도 부분이 많은 문제가 되고 있는데, 특히 세포영상에서는 인접한 영역의 분할이 가장 중요시되고 있다. 본 논문은 이러한 인접영역의 분할을 위해 객체의 기하 정보인 곡률(Curvature) 정보와 컨벡스 헐(Convex Hull)을 통한 분할 방법을 제안하고자 한다. 실험 결과 87.5%의 정확도가 검출되었으며 향후 인접 객체의 내부정보까지 고려한 효과적인 분할 방법을 연구하고자 한다.

Analysis of Medical Images Using EM-based Relationship Method (EM기반 관계기법을 이용한 의료영상 분석)

  • Kim, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.191-199
    • /
    • 2009
  • The integrated medical information system is an effective medical diagnosis assistance system which offers an environment in which medial images and diagnosis information can be shared. Because of the large-scale medical institutions and their cooperating organizations are operating the integrated medical information systems, they can share medical images and diagnosis information. However, this system can only stored and transmitted information without other functions. To resolve this problem and to enhance the efficiency of diagnostic activities, a medical image analysis system is necessary. In this paper, the proposed relationship method analyzes medical images for features generation. Under this method, the medical images have been segmented into several objects. The medical image features have been extracted from each segmented image. Then, extracted features were applied to the Relationship Method for medical image analysis. Several experimental results that show the effectiveness of the proposed method are also presented.