본 논문에서는 의료계의 PACS의 도입으로 디지털 의료영상 보안을 위한 방법으로, 디지털 워터마킹 기법(Digital Watermarking Technique)중 불법적인 위/변조 검증을 위한 워터마킹 기법을 제안한다. 제안된 워터마킹 방법은 의료영상의 인증과 무결성을 확인 할 수 있는 워터마킹 기법으로, 워터마크 삽입 추출시 블록 이산여현변환(discrete cosine transform)을 사용하여, 저주파 성분을 해쉬함수의 입력으로 하여 해쉬된 값을 시각적으로 인지할 수 있는, 이진영상과 함께 고주파 성분에 워터마크로서 선택적으로 삽입하여, 인증을 통한 국부화(localization)로 영상의 위/변조를 검증하고, 저작권도 확인할 수 있는 의료영상에 적합한 세미 프라질 워터마킹(semi-fragile watermarking)이다.
의료기술의 발전과 함께 의료기관에서 사용되는 영상 데이터량이 급속히 증가하고 있다. 따라서 대용량 의료 영상의 해석을 위해서는 의사들의 육안 검사보다 영상처리 기술을 이용한 자동화 방법이 필요하다. 특히 영상 정합을 통하여 의료 영상을 원하는 형태로 제공할 필요가 있고, 연속적으로 촬영된 2차원 영상들을 3차원 공간으로 해석하고 가시화 할 수 있는 기술이 필수적으로 요구된다. 그러나 현재 고가의 시스템이 대부분이며 의료기관에서는 고가의 시스템 도입에 따른 예산문제로 인해 사용하기를 꺼려하는 문제가 있다. 따라서 본 논문에서는 이러한 환경들을 고려하여 공개 그래픽 라이브러리인 VTK(Visualization Tool Kit)를 이용하여 정합된 결과를 3차원을 비롯한 여러 형태로 가시화할 수 있는 시스템을 개발하고자 한다. 제안한 시각화 시스템은 3차원 공간에서의 정합된 결과를 다양한 형태로 확인함으로써 단순히 2차원으로만 정합 결과를 표현했을 때 보다 정확한 진단 및 치료에 적용할 수 있으며 기존의 유사한 소프트웨어에 비해 가격 경쟁력도 갖출 것이라 예상된다.
본 연구에서 설계하고 구현한 뇌 MR영상 처리기에서는 뇌 MR 영상에서 진단에 필요한 정보들을 자동 추출한다. 의료영상 처리 시에는 수집된 의료영상의 특징을 분석하고 특징들을 분류해야 하며 이를 위해서는 효율적인 특징 추출 알고리즘들 필요하다. 뇌 MR 영상 처리기는 영상의 잡음제거나 영상 강화를 위한 전처리기, 영상의 특징을 추출하기 위한 영역분할기와 전역, 지역 특징 추출기로 구성된다. 뇌 MR 영상 특징 추출을 위한 효율적인 의료영상 처리기의 개발 내용을 기술한다.
의료영상의 시각화는 의료정보 시스템에서 질환 진단시 유용하게 사용되고 있다. 특히, 2차원 의료영상의 3차원 가시화를 통한 모의 견습은 실전에서의 부담감을 줄이는데 큰 역할을 하고 있고 이러한 결과는 관련 S/W 개발로 이어지고 있다. 본 논문에서는 의료영상을 여러 형태로 가시화하는 방법과 그 구현 결과에 대해서 기술한다. 구현은 공개 라이브러리인 VTK를 이용함으로써 기존의 유사한 S/W에 비해 가격 경쟁력 또한 갖추고 있다.
정보기술의 급격한 발달은 의료 환경에서도 많은 변화를 가져오고 있다. 특히 빅데이터와 인공지능(AI)을 활용한 의료영상 정보 시스템의 빠른 변화를 견인하고 있다. 전자의무기록(EMR)과 의료영상저장전송시스템(PACS)으로 구성된 처방전달시스템(OCS)은 의료 환경을 아날로그에서 디지털로 빠르게 바꾸어 놓았다. PACS는 여러 솔루션과 결합하여 호환, 보안, 효율성, 자동화 등 새로운 발전 방향을 보여주고 있다. 그 중, 영상의 질적 개선을 할 수 있는 빅데이터를 활용한 인공지능(AI)과의 결합이 활발히 진행되고 있다. 특히 딥러닝 기술을 활용하여 의료 영상 판독을 보조할 수 있는 시스템인 AI PACS가 대학과 산업체의 협력으로 개발되어 병원에서 활용되고 있다. 이처럼 의료 환경에서 의료영상 정보 시스템의 빠른 변화에 맞추어 의료시장의 구조적인 변화와 이에 대처할 수 있는 의료정책의 변화도 필요하다. 한편, 의료영상정보는 디지털 의료영상 전송 장치에서 생성되는 DICOM 방식을 기본으로 하고, 생성하는 방법의 차이에 따라 Volume 영상, 단면 영상인 2차원적 영상으로 구분된다. 또한, 최근 많은 의료기관에서는 스마트 병원 서비스를 내세우며 차세대 통합 의료정보시스템의 도입을 서두르고 있다. 차세대 통합 의료정보시스템은 EMR을 바탕으로 전자동의서, AI와 빅데이터를 활용한 정밀의료, 외부기관 등을 통합한 솔루션으로 구축하며, 이를 바탕으로 환자 정보 DB 구축과 데이터의 표준화를 통한 의료 빅데이터 기반의 의학 연구를 목적으로 한다. 우리나라의 의료영상 정보 시스템은 앞선 IT 기술력과 정부의 정책에 힘입어 세계적인 수준에 있으며, 특히 PACS 관련 프로그램은 의료 영상정보 기술에서 세계로 수출을 하고 있는 한 분야이다. 본 연구에서는 빅데이터를 활용한 의료영상 정보 시스템의 분석과 함께 의료영상 정보 시스템이 국내에 도입되게 된 역사적 배경을 바탕으로 현재의 흐름을 파악하고 나아가 미래의 발전 방향을 예측하였다. 향후, 20여 년 동안 축적된 DICOM 빅데이터를 기반으로 AI, 딥러닝 알고리즘을 활용하여 영상 판독률을 높일 수 있는 연구를 진행하고자 한다.
최근 의료 현장에 인공지능 기술의 도입이 가속화 되고 있다. 특히, 의료영상 분석 분야의 관련된 기 시스템 및 소프트웨어의 패러다임을 변화시키고 있다. 본 연구는 인공지능 기술을 적용하기 위한 학습의료영상 구성을 제안하고 이를 기반으로 X-ray 영상 중 손부위에 적용하여 오른손과 왼손을 판별하는 응용에 적용하였다. 그리고 Deep Learning Algorithm의 CNN을 개선하여 개발한 Advanced GoogLeNet를 적용하여 97%이상의 정확도를 보였다. 본 연구를 통해 얻어진 인공지능에 적용하기 위한 학습데이터 셋 구성과 개선된 알고리즘은 다양한 의료영상분석에 적용하고자 한다.
인공지능 기술을 도입한 의료분야에서 진단 및 예측을 위한 관련 연구가 활발하게 진행되고 있다. 특히, 인공지능 기술 적용에 가장 많이 활용되고 있는 의료영상을 기반으로 하는 질환에 관한 진단 연구는 매우 복잡한 과정이 필요한 질환의 진단에 큰 영향을 미치고 있다. 복부 장기들의 분할은 환자의 질환 진단 지원 및 복강경등의 수술 지원에 매우 중요한 부분을 차지한다. 본 논문에서는 의료영상을 통해 13가지 복부 장기들을 분할하는 모델을 만들고 그 결과를 보인다. 본 논문에서 제안한 모델을 통해 13가지 복부 장기에 대한 분할로 영상분석을 통해 진단 지원이 가능할 것으로 기대한다.
현재 뇌 질환의 진단은 전문의의 주관극인 판단에 의하기 때문에 보다 정량화되고 객관화된 근거를 제시할 수 있는 의료 영상 정보 분석 시스템이 필요하다. 본 시스템은 MR 영상에 대해 영상 처리 및 정보 관리를 통한 뇌 질만의 진단 및 계획이나 방법의 결정을 하는데 도움을 주기 위한 지식기반 의료 영상 처리 및 관리 시스템으로 의료 영상의 처리와 진단, 영상처리시스템 이용의 극대화, 시스템간의 유기적 연결 및 운용상의 문제점 등 의학영상에 관한 제반 연구를 수행함으로써 국내의 의료영상 기술을 선도하며, 의학영상분야 및 의과학 발전에 기여할 수 있을 것으로 생각된다.
의료산업은 진단 및 치료 위주의 기술개발이 진행되어왔다. 최근 의료 빅데이터를 기반으로 진단, 치료 및 재활뿐만 아니라 예방과 예후관리까지 지원하는 의료서비스에 대한 패러다임이 변화되고 있다. 특히, 여러 의료 중심의 플랫폼 기술 가운데 객관적인 진단지표를 가지고 있는 의료영상을 기반으로 인공지능 학습에 적용하여 진단 및 예측을 중심으로 한 플랫폼 개발이 진행되고 있다. 하지만, 인공지능 연구에는 많은 학습 데이터가 요구될 뿐만 아니라 학습에 적용하기 위해서는 데이터 특성에 따른 전처리 기술과 분류 작업에 많은 시간 소요되어 이와 같은 문제점을 해결할 수 있는 방법들이 요구되고 있다. 따라서, 본 논문은 인공지능 학습까지 적용하기 위한 의료영상 데이터에 대한 확장 모델을 개발하여 공통적인 조건에 따라 의료영상 데이터가 표준화되어 변환하며, 자동화 시스템 구조에 따라 데이터가 분류·저장되어 인공지능 학습까지 지원할 수 있는 플랫폼을 제안하고자 한다. 그리고 근감소증 학습데이터 관리 및 적용 결과를 통해 플랫폼의 수행성을 검증하였다. 향후 제안한 플랫폼을 통해 의료데이터에 대한 전처리, 분류, 관리까지 지원함으로써 CDM 확장 표준 의료데이터 플랫폼으로 활용 가능성을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.