• Title/Summary/Keyword: 의료영상가시화

Search Result 75, Processing Time 0.025 seconds

Development of Graphical Solution for Computer-Assisted Fault Diagnosis: Preliminary Study (컴퓨터 원용 결함진단을 위한 그래픽 솔루션 개발에 관한 연구)

  • Yoon, Han-Bean;Yun, Seung-Man;Han, Jong-Chul;Cho, Min-Kook;Lim, Chang-Hwy;Heo, Sung-Kyn;Shon, Cheol-Soon;Kim, Seong-Sik;Lee, Seok-Hee;Lee, Suk;Kim, Ho-Koung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • We have developed software for converting the volumetric voxel data obtained from X-ray computed tomography(CT) into computer-aided design(CAD) data. The developed software can used for non-destructive testing and evaluation, reverse engineering, and rapid prototyping, etc. The main algorithms employed in the software are image reconstruction, volume rendering, segmentation, and mesh data generation. The feasibility of the developed software is demonstrated with the CT data of human maxilla and mandible bones.

A Double Z-buffer Antialiasing Method for Voxelized Implicit Surfaces (복셀로 표현된 임플리시트 곡면을 위한 시프트(shifted) 더블 Z-버퍼 앤티 앨리어싱)

  • 김학란;박화진
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.44-53
    • /
    • 2004
  • This paper aims at presenting high quality at low resolution apply by a new antialiasing method for voxelized implicit surfaces. Implicit surfaces create a unique type of 3D-modeling. Some use of implicit surfaces are scientific and medical visualization, animation, medical simulation and interactive modeling. One of previous antialiasing methods for implicit surfaces presented by raytracing or texture mapping is making use of a stochastic sampling. But this method requires more calculation time and costs which is caused by complicated and difficult implicit functions. In the meanwhile, voxelized implicit surfaces generally use high resolution for good quality images but it costs to generate. In order to this problem, this paper suggests a shifted double Z-buffer which is very simple, more efficient and easy. Tn addition, there are applied box-filter and tent-filter to the double Z-buffer antialiasing method for better images. For results this method generate high quality image and it is easy to apply to various filters and is able to extend to multi Z-buffer.

  • PDF

A Study on survey of practical applications with the medical image data: Visible Korean Human and Digital Korean (한국인의 인체 영상 데이터에 대한 활용 사례 연구)

  • Kim, dae-jung;Ahn, sung-soo;Park, hyung-seon;Lee, Seung-bock
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.401-404
    • /
    • 2007
  • Recently, researches on human modeling and visualization are being done in medical, educational field and clinical treatment. As human configurations, however, are different among races and ethnic people, it is necessary to construct standard Korean human model according to Korean standard configuration, age, and sex etc. KISTI started building the Visible Korean Human Database in 2000 and it has provided the Digital Korean Database built in 2003 for users in university, research institute. As the utilization of the Human Data was insignificant and the majority fields that used the data were in research, we investigate application of data, other utilization method, and current research status to further and boost use of the Human data in many other fields.

  • PDF

Acceleration techniques for GPGPU-based Maximum Intensity Projection (GPGPU 환경에서 최대휘소투영 렌더링의 고속화 방법)

  • Kye, Hee-Won;Kim, Jun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.981-991
    • /
    • 2011
  • MIP(Maximum Intensity Projection) is a volume rendering technique which is essential for the medical imaging system. MIP rendering based on the ray casting method produces high quality images but takes a long time. Our aim is improvement of the rendering speed using GPGPU(General-purpose computing on Graphic Process Unit) technique. In this paper, we present the ray casting algorithm based on CUDA(an acronym for Compute Unified Device Architecture) which is a programming language for GPGPU and we suggest new acceleration methods for CUDA. In detail, we propose the block based space leaping which skips unnecessary regions of volume data for CUDA, the bisection method which is a fast method to find a block edge, and the initial value estimation method which improves the probability of space leaping. Due to the proposed methods, we noticeably improve the rendering speed without image quality degradation.

Computational Analysis of Airflow in Upper Airway for Drug Delivery of Asthma Inhaler (천식 흡입기의 약물전달을 위한 상기도내의 유동해석)

  • Lee, Gyun-Bum;Kim, Sung-Kyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Drug delivery in human upper airway was studied by the numerical simulation of oral airflow. We created an anatomically accurate upper airway model from CT scan data by using a medical image processing software (Mimics). The upper airway was composed of oral cavity, pharynx, larynx, trachea, and second generations of branches. Thin sliced CT data and meticulous refinement of model surface under the ENT doctor's advice provided more sophisticated nasal cavity models. With this 3D upper airway models, numerical simulation was conducted by ANSYS/FLUENT. The steady inspiratory airflows in that model was solved numerically for the case of flow rate of 250 mL/s with drug-laden spray(Q= 20, 40, 60 mL/s). Optimal parameters for mechanical drug aerosol targeting of predetermined areas was to be computed, for a given representative upper airways. From numerical flow visualization results, as flow-rate of drug-laden spray increases, the drag spray residue in oral cavity was increased and the distribution of drug spray in trachea and branches became more homogeneous.