• Title/Summary/Keyword: 응향방출

Search Result 3, Processing Time 0.02 seconds

Friction Welding of Dissimilar Hot Die Punch Materials and Its Creep Prediction and Quality Evaluation by AE(I) - FRW and AE+ (열간 금형펀치 제작을 위한 이종재 마찰용접과 고온크리프 실시간 예측 및 AE에 의한 품질평가(Ⅰ) -마찰용접과 AE)

  • Park, Il-Dong;Oh, Sae-Kyoo;Kim, Ji-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.77-82
    • /
    • 1999
  • The compleete joining method for dissimilar hot die punch materials and its real-time evaluation method are not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction wleding with a diffusion mechanism in bonding was applied in this study. So, this work was carried out to determine the optimal friction welding conditions and to analyze mechanical properties of friction welded joints of hot die punch materials (STD61 for the blade part of hot die punch) to alloy steel (SCM440 for the shank park of hot die punch) such as plunger. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

A Numerical Analysis of Acoustic-Pressure Response of H2-Air Diffusion Flames with Application of Time-Lag Model (시간지연 모델의 적용을 통한 수소/공기 확산화염의 음향파 응답 분석)

  • Sohn, Chae-Hoon;Lim, Jun-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Acoustic-pressure response of diluted hydrogen-air diffusion flames is investigated numerically by adopting a fully unsteady analysis of flame structures in low and high pressure regimes. As acoustic frequency increases, finite-rate chemistry is enhanced through a nonlinear accumulation of heat release rate for any pressure regime, leading to a high amplification index. Same numerical results are analyzed with application of a pressure-sensitive time lag model, and thereby, interaction index and time lag are calculated for each pressure regime. The interaction index has the largest value in each pressure regime at an acoustic frequency near 1000 Hz. In a high-pressure regime, flames are more unstable than in a low-pressure regime. The interaction index shows a good agreement with the amplification index.