• Title/Summary/Keyword: 응축 열전달 계수

Search Result 102, Processing Time 0.031 seconds

Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Condenser (응축기의 설계조건에서 공기측 열전달계수 및 압력강하 산출)

  • 김창덕;전창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.220-229
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150~250 kg/$m^2$s with air flows at velocity ranges from 0.6 m/s to 1.6 m/s.

Measurement of air side heat transfer coefficient of wire-on-tube type heat exchanger (Wire-on-tube형 열교환기의 공기측 열전달계수 측정)

  • 이태희;이장석;박종진;윤점열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 2000
  • The experiment was conducted to obtain correlation of the air side heat transfer coefficient of wire-on-tube type heat exchanger using the single layer heat exchanger. The correction factors to Zhukauskas correlation was driven from the experimental results. The numerical analysis and experiment with several wire-on-tube type condensers to validate the correction factors are also peformed. The maximum discrepancy between experimental results and the numerical results using the correction factors of this study and Zhukauskas correlation is 10.0%, while that of reference correlation is 47.5%.

  • PDF

Characteristics of Condensing Heat Transfer and Pressure Drop of Hydrocarbon Refrigerants (탄화수소계 냉매의 응축 열전달 및 압력강하 특성)

  • Lee Ho-Saeng;Seong Gwang-Hoon;Tong Phan Thanh;Yoon Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.977-983
    • /
    • 2006
  • Experimental results for heat transfer characteristic and pressure gradient of hydrocarbon refrigerants (R-290, R-600a, R-1270) and HCFC refrigerant (R-22) during condensation inside horizontal double pipe heat exchangers are presented. The test sections which have one tube diameter of 12.70 mm with 0.89 mm, 9.52 mm with 0.76 mm, 6.35 mm with 0.13 mm wall thickness are used for this investigation, respectively. The local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than those of R-22. The average condensing heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than R-22 in 10.92 mm, 8 mm and 6.1 mm inner diameters. These results from the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

Characteristics of In-Tube Condensation Heat Transfer and Pressure Drop in a Spirally-Twisted Tube and an Internally-Finned Tube (나선형비틈관과 내부핀부착관에서의 관내 응축 열전달 및 압력강하 특성)

  • 이상천;신현승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.203-211
    • /
    • 1994
  • An experiment was carried out to evaluate the heat transfer and pressure drop performances of the smooth tube and two augmented tubes using R-113 under horizontal condensation condition. The augmented tubes are a spirally-twisted tube and an internally-finned tube. The test tube is 13.88 mm in diameter and 3.2 m long. Five different inlet pressure of 0.13, 0.16, 0.18, 0.21 and 0.23 MPa were employed and the mass flux was varied from 80 to 265 $kg/m^{2}s.$ The results showed that the overall heat transfer coefficient for the spirally-twisted tube and internally-finned tube were enhanced by 30-85% and 130-180%, respectively, over that for the smooth tube. The increase in total pressure drop for the spirally-twisted tube and internally-finned tube were reached up to 250-350% and 1100-1600%, respectively, over that for the smooth tube. Correlations were proposed for predicting the condensation heat transfer coefficient for the smooth tube and two augmented tubes.

Flow Condensation Heat Transfer of R22, R134a, R407C, and R410A in Plain and Microfin Tubes (평관과 마이크로 핀관 내 R22, R134a, R407C, R410A의 흐름응축 열전달성능)

  • 조영목;박기호;송길흥;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.656-663
    • /
    • 2002
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 9.52 mm outside diameter and 1.0 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of $40^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/$m^2s$. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 11~l5% and 23~53% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 10~21% for a microfin tube. In general, HTCs of a microfin tube were 2.0~3.0 times higher than those of a plain tube.

Characteristics of the Air Heat Exchanger for the Improvement of the Heat Pump COP (열펌프 성능향상을 위한 공기 열교환기 특성)

  • 노정근;송현갑;박용규
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.151-157
    • /
    • 2002
  • 화석에너지에 대한 경제적 부담과 환경오염문제를 줄이기 위하여 열펌프의 성능계수향상을 위하여 냉온 공기열교환기(HEEVA)를 고안하였고, 이 열교환기의 열특성과 성능계수향상에 미치는 영향을 분석하기 위하여 냉.난방 실험을 수행하였다. HEEVA에 의한 찬 공기와 더운 공기의 온도변화, 전열량 및 냉온 공기열교환기 효율, 총열전달계수등을 측정분석하였고, 냉난방시 외기온에 따른 열펌프의 성능계수, 소비전력, 응축기.증발기 출구 공기토출 온도 변화를 측정 분석함으로서 다음과 같은 결과를 얻을 수 있었다. 1. 외기온이 -4~11$^{\circ}C$로 변할 때 열펌프의 난방과정에서 HEEVA 찬공기 입출구 온도차는 4.5$^{\circ}C$에서 9.$0^{\circ}C$로 증가하였으며, HEEVA에 의한 영향으로 2~6$^{\circ}C$상승된 공기가 증발기 입구로 유입되어 냉매증발을 촉진하였다. 2. 실온이 4~22$^{\circ}C$일 때 HEEVA 더운공기 입출구 온도차는 3$^{\circ}C$에서 7$^{\circ}C$로 증가하였으며, 응축기에 유입되는 공기온도를 3~8$^{\circ}C$낮게 함으로서 압축기 소모전력을 감소시켜 COP 상승 효과를 나타냈다. 3. 외기온과 실온변화에 따라 풍량 346m$^3$/hr의 찬 공기가 받은 열량과 풍량 747m$^3$/hr의 더운 공기가 준 열량간의 차는 50~150kcal/hr로 나타났으며, 더운 공기가 준열량과 찬 공기가 받은 열량의 비가 83~98% 이었으므로 HEEVA의 열 교환율은 91% 을 보였다. 4. 총합열전달계수는 이론값이 실험 값보다 1~3W/m$^2$K 크게 나타났으며, 이 결과는 두 값 사이에 10% 내.외의 편차로서 Nusselt수를 구하기 위한 Petukhov상관식의 자체오차 15%에 비해 크지 않은 오차범주에 속하며, 이론상의 총합열전달계수 유도식의 타당성을 입증한 것이라 하겠다. 5. HEEVA를 작동함으로서 난방시 COP가 HEEVA를 작동하지 않았을 경우보다 0.3~0.5 향상된 것으로 나타났다. 이것은 HEEVA가 겨울철 난방에 효율을 높일수 있는 것으로 판단된다.

  • PDF

Experimental Study for Evaporation Heat Transfer and Pressure Drop of R-22 and R-407C in an Inner Diameter of 4.3 mm and 6.4 mm (내경 4.3 mm와 6.4 mm관내 R-22와 R-407C의 증발 열전달과 압력강하에 관한 실험연구)

  • Son, Chang-Hyo;Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.43-49
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in horizontal copper tubes were investigated experimentally. The main components of therefrigerant loop are a receiver, a compressor, a mass flow meter, a condenser and a double pipe type evaporator (test section). The test section consists of a smooth copper tube of 4.3 mm and 6.4 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300[kg/m^2s]$ and the saturation temperature of evaporator were 5 [$^{\circ}C$]. The evaporation heat transfer coefficients of R-22 and R-407C rise with the increase in mass flux and vapor quality. The evaporation heat transfer coefficient of R-22 for inner diameter tube of 4.3 mm and 6.4 mm is about $7.3{\sim}47.1%$ and $5.68{\sim}46.6%$ higher than that of R-407C, respectively.

  • PDF

A Study on the condensate Retention at Horizontal Integral-Fin tubes (낮은 핀을 가진 수평관의 응축액 억류에 관한 연구)

  • 한규일;조동현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.151-165
    • /
    • 1996
  • Relation between condensate retention and heat transfer performance is studied for condensation of CFC-11 on horizontal integral-fin tubes. Eight tubes with trapezoidally shaped integral fin density from 738fpm to 1654fpm and 10, 30 grooves are tested. The liquid retention angles are measured by the height gauge, and each tube is tested under static(non-condensing) condition (CFC-11, water) and under dynamic(condensing) condition (CFC-11). The analytical model predicts the amount of liquid retention on a horizontal integral-fin tubes within+10 percent over most of the data. Average retention angle increases as both surface tension-to-density ratio($\sigma/\rho$) and fin density(fpm) increase, The tube having a fin density of 1299~1654fpm has the best heat transfer performance. The amount of surface flooding must keep below of 40 percent for best heat transfer performance at condensation. The tube having low number of fin density must be used for fluids having high values of $\sigma/\rho$(water, (TEX)$NH_3$, ect.) and the tube having high number of fin density must be used for the fluid having low values of $\sigma/\rho$(R-11, R-22, etc.)

  • PDF

An Analysis on Direct-Contact Condensation in Horizontal Cocurrent Stratified How of Steam and Cold Water (동방향 성층이상유동에서의 직접접촉 응축현상에 대한 해석)

  • Lee, Sukho;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.130-140
    • /
    • 1992
  • The physical benchmark problem on the direct-contact condensation under the horizontal occurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was peformed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range.

  • PDF

A Fundamental Study on Development of a Rotating Horizontal Heat Pipe (회전식 수평 Heat Pipe의 개발에 관한 기초 연구)

  • 임광빈;이진성
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.325-332
    • /
    • 1999
  • When a rotating heat pipe is in operation, liquid condensate returns from the condenser to the evaporator along the inside surface by both components of gravitational and centrifugal forces. It was known that its performance was largely dependent on how to increase the flow rates of condensate and keep the condensate film thickness as thin as possible. Most of research works were focussed on this goal, and various inner wall structures such as tapered wall, stepped wall or coil inserted pipe etc. were developed. In the present study, a stepped wall structure with 3 internal grooves in the condenser and adiabatic zone was examined. For this system, the condensate would flow down to the evaporator through the grooves, resulting a reduced film thickness over the condenser surface. Experimental data showed an enhancement of heat transfer coefficient in the condenser zone. An analytical solution to the condensate film thickness showed that the analytically calculated values of heat transfer coefficient were considerably higher than the experimental data.

  • PDF