• 제목/요약/키워드: 응축 열전달 계수

검색결과 102건 처리시간 0.029초

HFC 순수냉매 및 3성분 혼합냉매의 수평관내 응축열전달 (Condensation Heat Transfer for Pure HFC Refrigerants and a Ternary Refrigerant Mixture Inside a Horizontal Tube)

  • 오종택;비원 영치
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.233-240
    • /
    • 2000
  • An experimental study of condensation heat transfer was performed for pure refrigerants HFC32, HFCI25, and HFC134a, and a ternary refrigerant mixture of HFC32/125/134a (23/25/52wt%). The heat transfer coefficients were measured inside a horizontal smooth tube 5.8 mm I.D. and 8.0 m long. The refrigerant temperature at inlet was 40 $^{\circ}C$, and the mass flux was varied from 150 to 400 $kg/m^2s$. As for the pure refrigerants, the heat transfer coefficient of HFC32/125/l34a decreased as the quality decreased. In addition, the heat transfer coefficient of HFC32/l25/134a was about 20 % lower than HFC 134a at a low mass flux but showed no reduction at a high mass flux. The heat transfer coefficient of ternary refrigerant mixtures was 30% lower on the average than that of the pure refrigerant.

비공비혼합냉매를 사용하는 열펌프의 응축열전달 특성 (Condensing Heat Transfer Characteristics on a Heat Pump System Using Non-Azeotropic Refrigerant Mixtures)

  • 박기원;오후규;김욱중
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1125-1133
    • /
    • 1995
  • Experiments were performed to investigate the condensing heat transfer characteristics of non-azeotropic mixtures of R-22 and R-114 in a heat pump system with a horizontal smooth tube as a condenser. The ranges of parameters, such as heating capacity, mass flow rate of refrigerant and quality were 780-3,480W, 24-71kg/h, and 0-1, respectively. The overall compositions of R-22 in a R-22/114 mixture were 25, 50, 75 and 100 per cent by wight. The results show that the overall condensing heat transfer coefficients for the mixtures were lower than the pure R-22 values. Local heat transfer coefficient of the pure R-22 was hghest at the top of the test tube. The local heat transfer coefficient of R-22/114 (50/50 wt%) at side and bottom of the test tube was higher than that at the top. From the obtained data, a prediction for the condensing heat transfer coefficients of the mixture was done based on the method of Fujii.

마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구 (Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes)

  • 노건상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

작동유체가 수평관형 응축기 성능에 미치는 영향에 관한 모사 (Simulation of the effect of working fluids on the horizontal tube condenser)

  • 전용두;이금배;오규남;김진경;박기호;정대헌
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.281-285
    • /
    • 2008
  • Effective use of available energy sources is of general concern along with the issues of global warming and unstable oil price. As one of the effort to recover waste heat from industrial facilities effectively, researchers have interest in a technology called organic Rankine cycle(ORC), in which the working fluid is some organic liquid instead of water. Known to have poor efficiency already, this old technology is considered to give an innovative solution to utilizing low grade energy sources, by improving the efficiency. Nano fluidics, coatings and the use of additives are the examples of these efforts. In the present study, we present simulated performance of a horizontal tube type condenser geometry. N-hexanr and isopentane are compared to water vapor case under 1 atm and the inet cooling water temperature of $20^{\circ}C$. EES(Engineering Equations Solver) is used for the present work.

  • PDF

대체냉매 R407C 및 R410A를 이용한 슬릿휜-관 열교환기의 응축특성에 관한 연구 (An Experimental Study on Condensation Characteristics of Slit Fin-tube Heat Exchanger Using Alternative Refrigerants, R407C and R410A)

  • 전창덕;장경근;강신형;이진호
    • 설비공학논문집
    • /
    • 제14권9호
    • /
    • pp.706-716
    • /
    • 2002
  • R410A and R407C are considered to be alternative refrigerants to R22 for the air-conditioners. Experimental investigation is made to study the condensation heat transfer characteristics of slit fin-tube heat exchanger using alternative refrigerants R410A and R407C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation heat transfer coefficient was much lower than that of R22 and R410A. Between the R22 and R410A, the condensation heat transfer coefficient of R410A, near-azeotropic refrigerant mixture, was a little higher than that of R22. R410A also showed the lowest condensation pressure drop across the test section. For all refrigerants, the condensation heat transfer coefficient and pressure drop increase as the mass flux increases.

수평관 외벽에서 친수성 표면처리가 응축열전달에 미치는 영향 (Effects of Hydrophilic Surface Treatment on Condensation Heat Transfer at the Outside Wall of Horizontal Tube)

  • 황규대;박노성;강병하
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.533-540
    • /
    • 2000
  • Condensation heat transfer characteristics have been investigated experimentally when a water vapor is condensed on the outside of a horizontal copper tube in a condenser. This problem is of particular interest in the design of a LiBr-water absorption system. Hydrophilic surface modification was performed to increase the wettability on the copper tube. The optimum hydrophilic treatment condition using acethylene and nitrogen as reaction gas is also studied in detail. The results obtained indicate that the optimum reaction gas ratio of acethylene to nitrogen for hydrophilic surface modification was found to be 7 : 3 for the best condensation heat transfer. In the wide ranges of coolant inlet temperatures, and coolant mass flow rates, both the condensation heat transfer rate and the condensation heat transfer coefficient of a hydrophilic copper tube are increased substantially, compared with those of a conventional copper tube used in a condenser. It is also found that the condensation heat transfer enhancement by the hydrophilic surface modification still emains even after a hundred cycles of wet/dry processes.

  • PDF

액적이탈을 고려한 관내 응축열전달계수 계산 모델 (A modeling of in-tube condensation heat transfer considering liquid entrainment)

  • 권정태;안예찬;김무환
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.946-955
    • /
    • 1998
  • Local condensation heat transfer coefficients in tubes were calculated by solving momentum and energy equations for annular film with liquid entrainment. The turbulent eddy distribution across the liquid film has been proposed and the calculated heat transfer coefficients were presented. Also turbulent Prandtl number effects on condensation heat transfer were discussed from three Pr$\_$t/ models. Finally, the calculated condensation heat transfer coefficients of R22 were compared with some correlations frequency referred to in open literature. This calculation model considering liquid entrainment predicted well the in-tube condensation heat transfer coefficient of R22 than the model not considering liquid entrainment. The effect of entrainment on heat transfer was predominant for high quality and high mass flux when the liquid film was turbulent.

세관내 R-22 대체냉매의 응축열전달에 관한 연구 (The Condensation Heat Transfer of Alternative Refrigerants for R-22 in Small Diameter Tubes)

  • 손창효;정진호;오종택;오후규
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.180-186
    • /
    • 2001
  • The condensation heat transfer coefficients of pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube were investigated. The experiment apparatus consists of a refrigerant loop and a water loop. The main components of the refrigerant loop consist of a variable-speed pump, a mass flowmeter, an evaporator, and a condenser(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flowmeter. The condenser is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal copper tube of 3.38mm outer diameter and 1.77mm inner diameter. The length of test section is 1220mm. The refrigerant mass fluxes varied from 450 to 1050kg/(㎡$.$s) and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main results were summarized as follows ; in the case of single-phase flow, the heat transfer coefficients increase with increasing mass flux. The heat transfer coefficient of R-410A was higher than that of R-22 and R-134a, and the heat transfer for small diameter tubes were about 20% to 27% higher than those predicted by Gnielinski. In the case of two-phase flow, the heat transfer coefficients also increase with increasing mass flux and quality. The condensation heat transfer coefficient of R-410A was slightly higher than that of R-22 and R-134a. Most of correlations proposed in the large diameter tube showed significant deviations with experimental data except for the ranges of low quality and low mass flux.

제지공장 가열 실린더의 모델링 (Modeling of Drying Cylinders in Paper Plants)

  • 곽기영;여영구;김영곤;최경석;강홍
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2003년도 추계학술발표논문집
    • /
    • pp.249-271
    • /
    • 2003
  • 본 연구에서는 제지공장의 건조공정에서 실린더 내에 열원으로 공급되는 수증기가 실린더 표면에 이르기까지의 동특성으로부터 건조 실린더에 대한 모델을 구하고 입력변화에 따른 공정 응답의 특성을 분석하였다. 실제 조업조건에 근거한 건조공정 모델에서 수중기 압력이 주요 변수로 작용하며 응축수에서 캔버스에 이르는 계 사이의 열전달 계수는 물질의 열 전도도와 제지공장 운전자료로부터 경험적인 식으로 나타낼 수 있음을 확인하였다. 아울러 실제 공정의 출력변수인 수분함량과 측정된 지필의 온도(open-run, free-run)를 이용하여 모델의 타당성을 검증하였으며 제지공장의 운전 특성을 나타내는 모델에서 유도된 전달함수로 대상 공정의 동특성을 분석하고 안정성 여부를 확인하였다.

  • PDF

판각형 열교환기내의 R-134a 응축열전달 특성에 관한 실험적 연구 (Experimental Study on R-l34a Condensation Beat Transfer Characteristics in Plate and Shell Heat Exchanger)

  • 이기백;박재홍;서무교;이희웅;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.108-116
    • /
    • 2003
  • In this paper, the experimental results of condensation heat transfer were reported for the plate and shell heat exchangers(P&SHE) using R-l34a. An experimental refrigerant loop has been established to measure the condensation heat transfer coefficient of R-l34a in a vertical P&SHE. Two vertical counter flow channels were formed in the P&SHE by three plates of geometry with a corrugated trapezoid shape of a chevron angle of 45$^{\circ}$. Downflow of the condensing R-l34a in one channel releases heat to the cold up flow of water in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality of R-l34a on the measured data were explored in detail. The results indicate that at a higher vapor quality the condensation heat transfer coefficients are significantly higher. Condensation heat transfer coefficients were increased when the refrigerant mass flux was increased. A rise in the average heat flux causes an slight increase in the hr. Finally, at a higher system pressure the hr is found to be lower. Correlation is also provided for the measured heat transfer coefficients in terms of the Nusselt number.