When we apply binary classification to multi-class classification for text categorization, we use the One-Against-All method generally, However, this One-Against-All method has a problem. That is, documents of a negative set are not labeled by human. Thus, they can include many noisy documents in the training data. In this paper, we propose that the Sliding Window technique and the EM algorithm are applied to binary text classification for solving this problem. We here improve binary text classification through extracting noise documents from the training data by the Sliding Window technique and re-assigning categories of these documents using the EM algorithm.
Proceedings of the Korean Society for Information Management Conference
/
2000.08a
/
pp.37-40
/
2000
KNN(K-Neatest Neighbors)을 사용한 문서의 자동분류에서는 새로운 입력문서에 범주를 할당하기 위해 K개의 유사문서로부터 범주별 문서의 분류빈도나 유사도를 이용한다. 본 연구에서는 KNN 기법에서 보편적으로 사용되는 범주 할당 방법을 응용하여 K개 유사문서 중 최상위 및 상위 M개 문서에 가중치를 부여하는 방법들을 고안하였고 K값의 변화에 따른 이들의 성능을 비교해 보았다.
국제표준화기구 ITU-T에서는 연구그룹(Study Group)17이 정보통신 응용보안에 관한 표준화를 리드하는 연구그룹으로, 산하 4개의 연구과제(Question)를 구성하여 정보보호 국제표준을 개발하고 있다. 이 연구과제들 중 Q.7(의장, 나재훈, ETRI)에서는 안전한 응용 서비스라는 범주로 안전한 응용 프로토콜, 웹서비스 보안, P2P(Peer-to-Peer) 보안 등 정보통신환경의 응용서비스 보호에 적용될 수 있는 국제표준들의 개발을 담당하고 있다. Q.8(의장, Liang Wei, CATR)에서는 서비스 지향 구조라는 범주로 SOA(Service Oriented Architecture) 기술 및 통신 보안에 관련된 국제표준들의 개발을 담당하고있다. 현재 Q.7에서는 총 7건의 국제표준을 제정하였으며, 총 6건의 표준초안들이 개발중에 있다. Q.8의 경우는 현재 총3건의 표준초안들이 개발중에 있다. 본 논문에서는 해당 연구과제들의 표준화 현황과 향후 추진 방향을 제시한다.
Proceedings of the Korean Operations and Management Science Society Conference
/
1992.04b
/
pp.188-197
/
1992
제품 개발에 관한 응용 연구 혹은 개발 연구의 실험 결과가 품질특성의 본질적인 성격이나 측정시의 편의때문에 순차 범주형 자료(ordered categorical data)로 분류되는 경우가 있다. 본 논문에서는 망목 특성 문제(nominal-the-best type problem)를 분석하는데 있어서 기존의 다구찌 누적법이 순차 범주형 자료분석법이 안고 있는 문제점들을 고찰하고, 이를 개선하기 위해 품질손실에 근거한 목표 누적법을 제시한다. 본 논문에서 제시한 기법을 post-etch contact window데이타에 적용해 본 결과 인자의 최적수준을 결정하는데 용이하였다.
The goal of text categorization is to classify documents into a certain number of pre-defined categories. The previous studies in this area have used a large number of labeled training documents for supervised learning. One problem is that it is difficult to create the labeled training documents. While it is easy to collect the unlabeled documents, it is not so easy to manually categorize them for creating training documents. In this paper, we propose a new text categorization method based on semi-supervised learning. The proposed method uses only unlabeled documents and keywords of each category, and it automatically constructs training data from them. Then a text classifier learns with them and classifies text documents. The proposed method shows a similar degree of performance, compared with the traditional supervised teaming methods. Therefore, this method can be used in the areas where low-cost text categorization is needed. It can also be used for creating labeled training documents.
This short article is concerned with a categorical time series obtained after clipping a heteroscedastic GARCH process. Estimation methods are discussed for the model parameters appearing both in the original process and in the resulting binary time series from a clipping (cf. Zhen and Basawa, 2009). Assuming AR-GARCH model for heteroscedastic time series, three data sets from Korean stock market are analyzed and illustrated with applications to calculating certain probabilities associated with the AR-GARCH process.
Latent class models (LCM) are useful tools to draw hidden information from categorical data. This model can also be interpreted as a mixture model with multinomial component distributions. In some cases, however, an available dataset may contain both categorical and count or continuous data. For such cases, we can extend the LCM to a mixture model with both multinomial and other component distributions such as normal and Poisson distributions. In this paper, we consider a LCM for the data containing categorical and count data to analyze the Drug Review dataset which contains categorical responses and text review. From this data analysis, we show that we can obtain more specific hidden inforamtion than those from the LCM only with categorical responses.
본 논문의 목적은 인터넷에서 범주형 자료분석에 대한 전문적인 지식이 없는 일반 분석자들에게 보다 쉽고, 간편하게 다룰 수 있는 범주형 자료 분석 시스템을 제공하는것이다. 이 분석 시스템은 크게 세 가지 측면으로 설계하여 구현하였다. 첫째, 범주형 자료에 대한 탐색적 자료분석을 위하여 세 가지 종류의 히스토그램을 제공한다. 둘째, 범주형 변수들간에 존재하는 연관성을 측정하기 위한 여러 연관성 측도들을 제공한다. 특히, 현재 많이 사용되는 통계 패키지들에서 제공하지 못하는 모자익 그림과 연관 그림을 동적 그래픽스로 구현하여 연관성을 측정하거나 모형을 설정하는데 유용한 정보를 얻을 수 있도록 하였다. 셋째, 대수선형모형에 대한 분석을 통해 사용자가 가장 잘 적합된 대수선형모형을 선택할 수 있게 하였다.
Testing of order-restricted alternative hypothesis in $2{\times}k$ contingency tables can be applied to various fields of medicine, sociology, and business administration. Most testing methods have been developed based on a large sample theory. In the case of a small sample size or unbalanced sample size, the Type I error rate of the testing method (based on a large sample theory) is very different from the target point of 5%. In this paper, the exact testing method is introduced in regards to the testing of an order-restricted alternative hypothesis in categorical data (particularly if a small sample size or extreme unbalanced data). Power and exact p-value are calculated, respectively.
Most of supervised teaming algorithms could be applied after that continuous variables are transformed to categorical ones at the preprocessing stage in order to avoid the difficulty of processing continuous variables. This preprocessing stage is called global discretization, uses the class distribution list called bins. But, when data are large and the range of the variable to be discretized is very large, many sorting and merging should be performed to produce a single bin because most of global discretization methods need a single bin. Also, if new data are added, they have to perform discretization from scratch to construct categories influenced by the data because the existing methods perform discretization in batch mode. This paper proposes a method that extracts sample points and performs discretization from these sample points in order to solve these problems. Because the approach in this paper does not require merging for producing a single bin, it is efficient when large data are needed to be discretized. In this study, an experiment using real and synthetic datasets was made to compare the proposed method with an existing one.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.